Стохастическое моделирование индивидуальной клеточной динамики с использованием клеточных автоматов и искусственных нейронных сетей.

Савинков Р.С., Гребенников Д.С., Бочаров Г.А. (ивм ран, мфти, сеченовский университет)

Поддержано РНФ № 18-11-00171, РФФИ № 20-01-00352, РФФИ № 20-04-60157.

Поставленные задачи

- разработка вычислительно простых методов вычисления деформаций тела клетки;
- определение зависимости затраченного времени при вычислении миграции клетки в поле цитокинов;

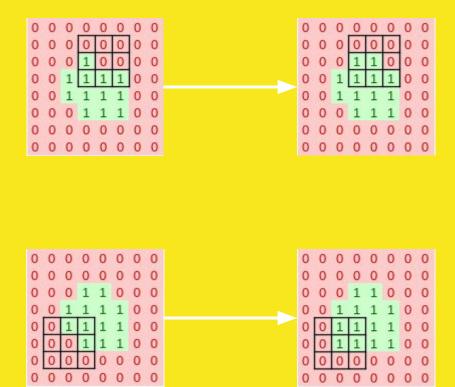
Подзадачи

• разработка вычислительно простых методов вычисления деформаций тела клетки:

Ключевой задачей становится исключение процедур сложности O(n³). Это становится возможным с использованием определенных паттернов деформации тела клетки.

 определение зависимости затраченного времени при вычислении миграции клетки в поле цитокинов:

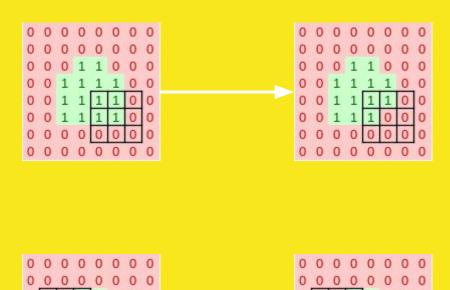
Нелинейные зависимости могут быть определены с использованием искусственной нейронной сети.

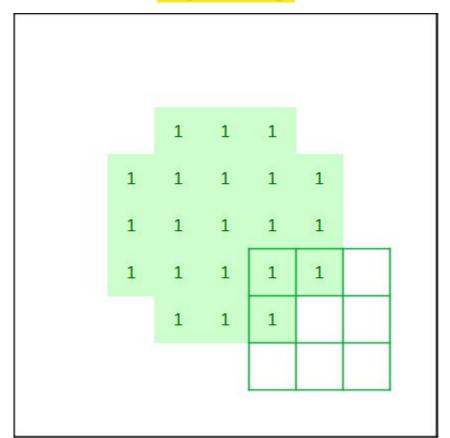

Модификация формы клетки

избежание процедур сложности O(n³) Для 2D (как и для 3D) случая, возможно выделить конечное локальных состояний число поверхности тела клетки, которыми переход между гарантирует сохранение СВЯЗНОСТИ тела клетки И избежание формирования внутренних пустот. TO же время, сложность алгоритма не превышает О(n²), что гораздо лучше О (n³) для больших n.

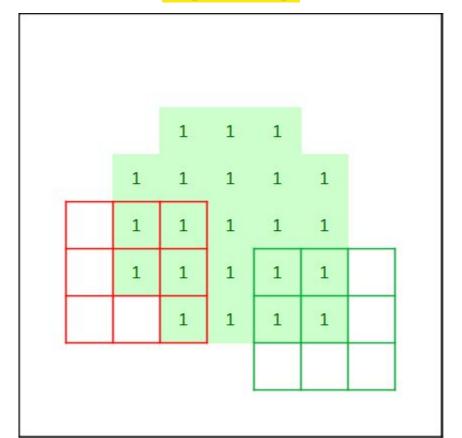
Паттерны роста

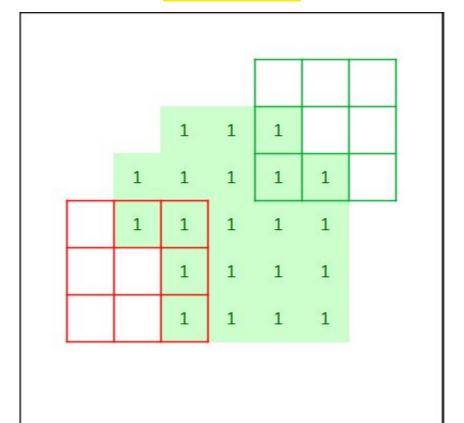
0	0	0	16	0	0	0	Œ.	0	0	0	0	1	0	%	0	0	0	0	0	0	-	0	0	0	0	0	0
0	0	0		0	0	1		1	0	0	0	0	0		0	0	0	0	0	0		0	0	1	1	0	0
		0		0	0	0				0	0	0	0				1	1	1	0		0	0	1	1	0	0
	_				-				-			_				_	_	_	_					_	_		
0	0	1		0	1	1		1	0	0	1	1	0		0	0	0	0	0	0		0	0	0	0	0	1
													100														
		1				0				0			0				0			1				0		0	
0	0	0		0	0	0		0	0	0	0	0	0		1	1	1	0	1	1		1	1	0	0	0	1
0	1	1		1	0	0		1	1	0	1	1	1		0	0	0	0	0	0		0	0	1	0	1	1
0	0	1		1	0	0		1	0	0	0	0	0		0	0	1	1	0	0		0	0	1	0	0	1
		0				0				0			0				1			1				1		0	
				-					-		-				-	_	_	_	_	_			_	_		-	_
4	0	0		4	4	0		4	4	4	4	4	4		0	0	0	0	0	4		0	4	4	4	^	0
	0				1					1			1				0			1				1	1	180	
	0			1	0	0		0	0	1	1	0	0		1	0	1	0	0	1		0	0	1	1	0	0
1	1	0		1	0	0		0	0	0	0	0	0		1	1	1	1	1	1		0	1	1	1	1	1
1	1	0		1	1	1		1	1	1	1	1	1		0	0	1	0	1	1		1	0	0	1	1	0
	0			0	0	1		1	0	0	1	0	1				1	0	0	1			0		1	0	0
		0				1				0			0				1			1				1		1	
1	1	U		U	U	1		1	U	U	U	U	U		-	T	1	1	1	1		1	1	1	1	1	-
																-			-								
		1				1				1			1				1			1		1		1		1	
0	0	1		1	0	0		1	0	1	1	0	1		1	0	1	0	0	1		1	0	0	1	0	1
0	1	1		1	1	0		0	0	1	1	0	0		1	1	1	1	1	1		1	1	1	1	0	1

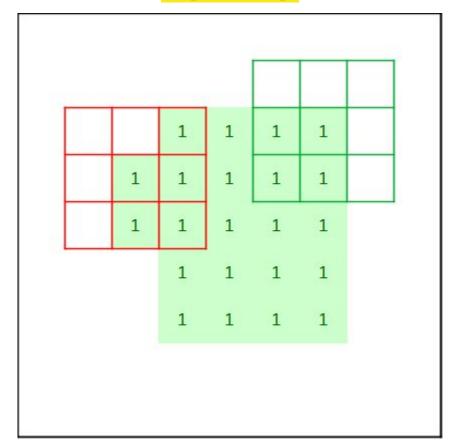

Примеры

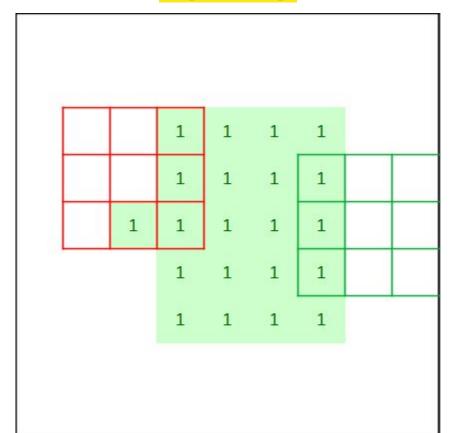


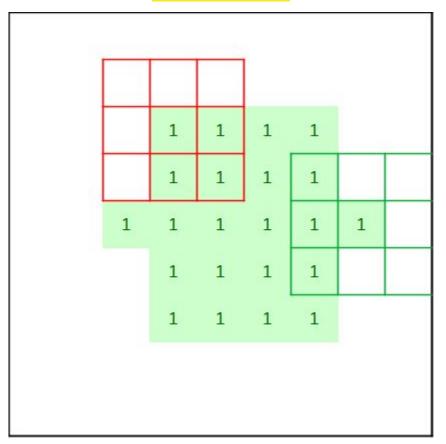
Паттерны редукции

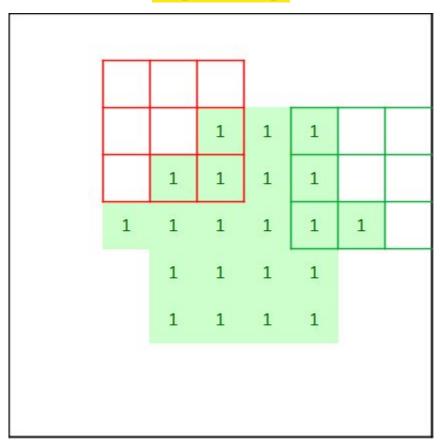

1																							
0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
200	1			1			1		0	1	0		1				0	0				1	
		0		0			0			0				1			0	0				0	
U	1	U	U	U	v	U	U	U	U	U	U	U	1	1	1	T	U	U	U	1	_	U	U
0	0	1	0	1	1	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0		0	
0	1	1	0	1	0	1	1	0	0	1	0	0	1	0	0	1	1	1	1	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	1	1	1	1	0	0	0	1
MARKE ST	2000					10000	115 /		3.5			25/01/0	1000	- 100	35	1000		200	1885		37		2000
0	1	1	4	0	0	4	1	0	4	1	4	0	0	0	0	0	0	0	0	1	0	1	4
				0			1			1				0			0		0				
		1	1	1	0		1		0	1	0	0	1	1			0	0	1	1		1	
0	0	0	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	1	0	0	1
1	0	0	1	1	0	1	1	1	1	1	1	0	0	0	0	0	1	0	1	1	1	0	0
		0		0			1			1			1				1		1			1	
1	1	0	1	0	0	U	0	U	U	0	U	1	1	1	1	1	1	U	1	1	1	1	1
1	1	0	1	1	1	1	1	1	1	1	1	0	0	1	0	1	1	1	0	0	1	1	0
1	1	0	0	1	1	1	1	0	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0
		0			1		0			0				1			1		1			1	
1	1	U	U	U	1	1	U	U	U	U	U	1	1	_	1	1	1	_	1	_	_	To	7
													_										
		1		1	-	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	7	1	0.00
0	1	1	1	1	0	1	1	1	1	1	1	1	1	1	0	1	1	1	1	0	1	1	1
0	1	1	1	1	0	0	0	1	1	0	0	1	1	1	1	1	1	1	1	1	1	0	1

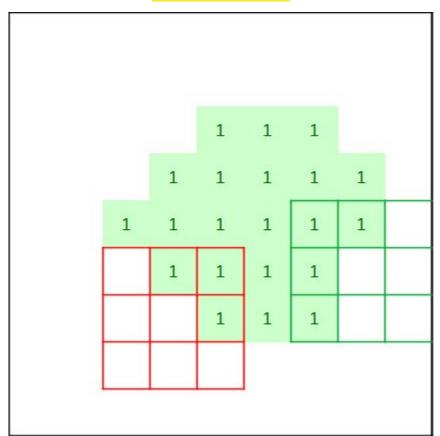

Примеры

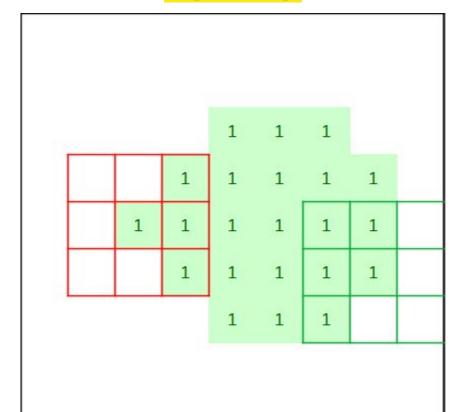


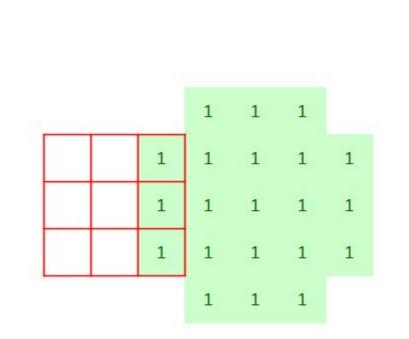



Чередуя	наращі	ивание	И
редукцию	тела	клетки	c
использова	нием вы	шеуказані	НЫХ
шаблонов,	можно	перемещ	ать
клетку по р	асчётной	и́ области.	





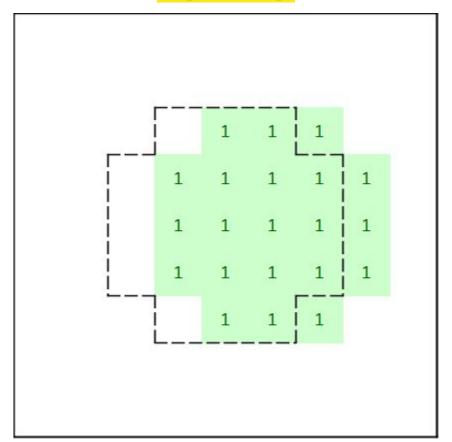

Чередуя	наращі	ивание	И					
редукцию	тела	клетки	c					
использова	нием вы	шеуказанн	ΙЫΧ					
шаблонов,	можно	перемеща	ать					
клетку по расчётной области.								



Чередуя	наращі	ивание	И					
редукцию	тела	клетки	c					
использова	нием вы	шеуказанн	ΙЫΧ					
шаблонов,	можно	перемеща	ать					
клетку по расчётной области.								

Чередуя	наращі	ивание	И
редукцию	тела	клетки	c
использова	нием вы	шеуказані	НЫХ
шаблонов,	можно	перемещ	ать
клетку по р	асчётной	и области.	

 1
 1
 1

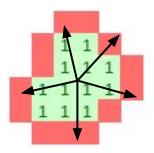

 1
 1
 1
 1

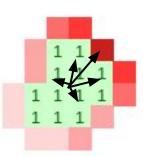
 1
 1
 1
 1
 1

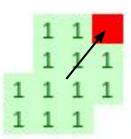
 1
 1
 1
 1
 1

 1
 1
 1
 1
 1

Чередуя	наращі	ивание	И
редукцию	тела	клетки	c
использова	нием вы	шеуказані	ных
шаблонов,	можно	перемеш	ать
клетку по р	асчётной	і́ области.	

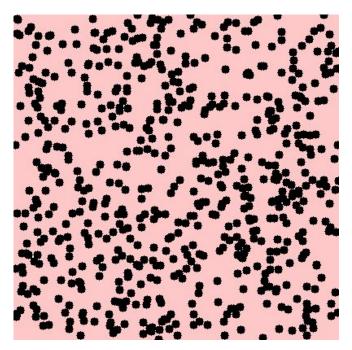



Чередуя	наращі	ивание	И					
редукцию	тела	клетки	c					
использова	нием вы	шеуказанн	ΙЫΧ					
шаблонов,	можно	перемеща	ать					
клетку по расчётной области.								

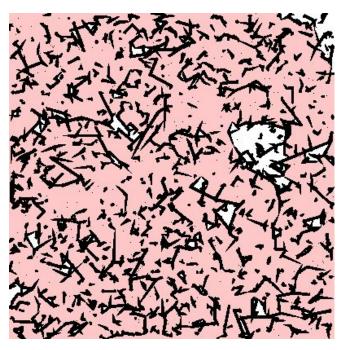

Выбор направления движения клетки

Направление миграции клетки может быть выбрано различными способами:

- в направлении максимальной концентрации хемокина;
- выбор направления с вероятностью, пропорциональной локальной концентрации хемокина на границе тела клетки;
- случайный выбор;
- любой иной вариант;

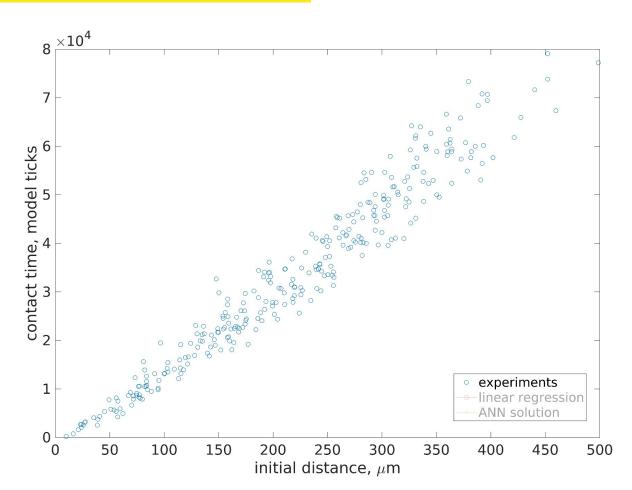


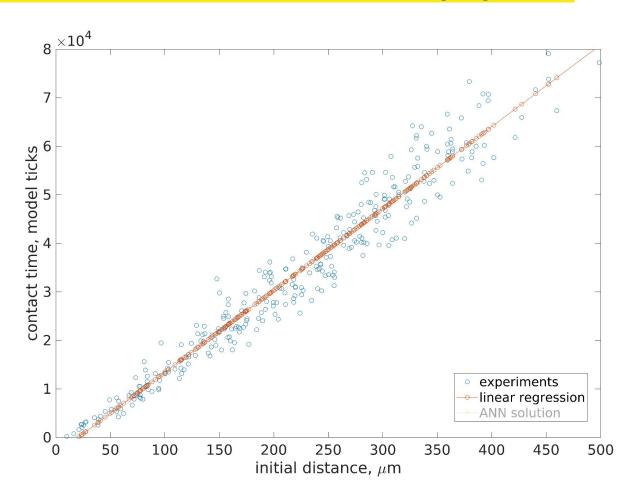
Предсказание времени контакта с использованием ИНС


Правила и расчетные

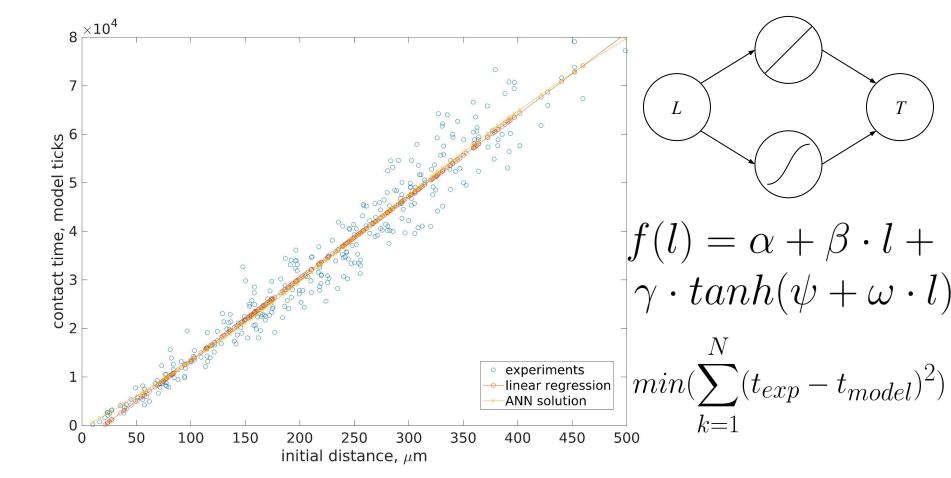
области

- 1 клетка;
- 1 цель;
- неподвижное окружение;

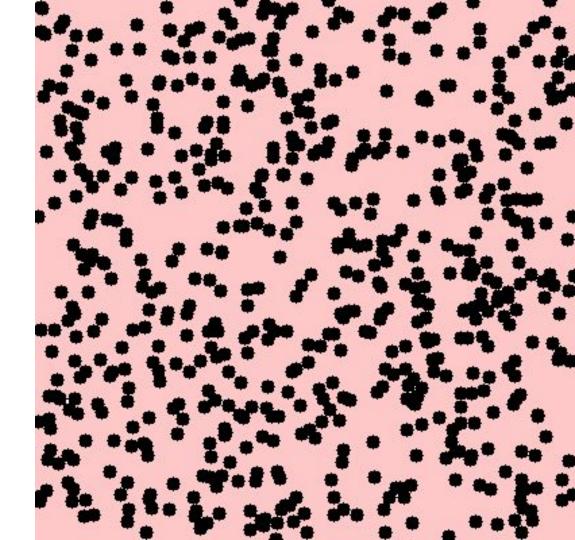

Окружение "чашка Петри"


2D срез сети фибробластных ретикулярных клеток

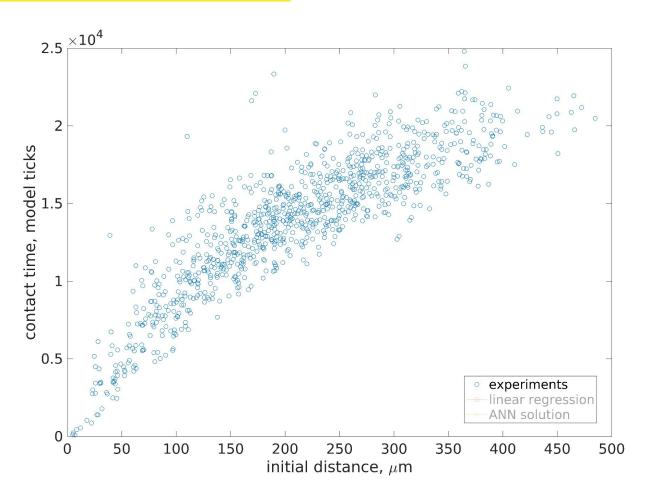
*розовым отмечена область, в которой размещаются клетка и цель


Эксперименты в пустой области

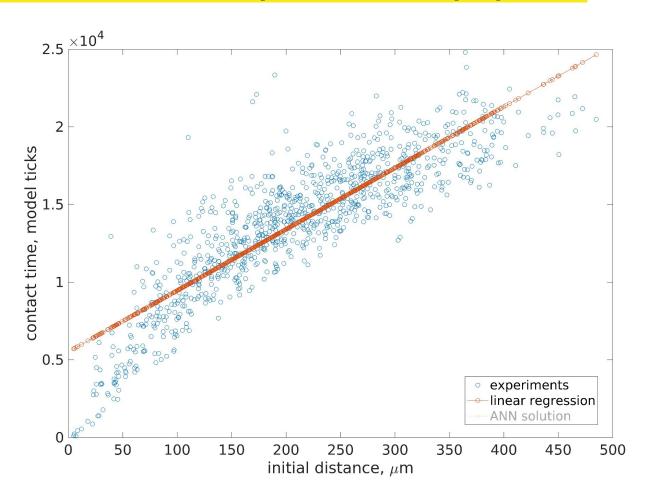
Эксперименты в пустой области : линейная регрессия

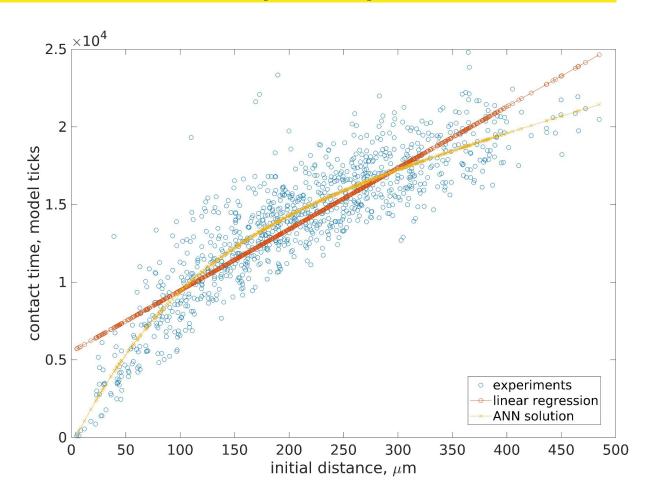


Эксперименты в пустой области : аппроксимация с ИНС

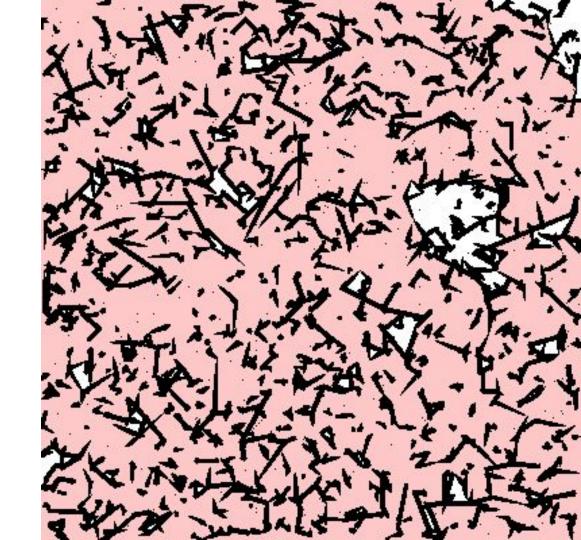


Чашка Петри

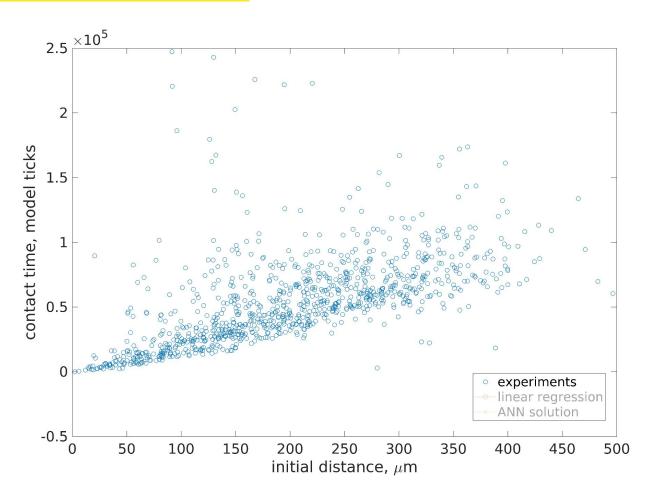

- 400x400 мкм;
- 640 точек радиусом 5 мкм;


Эксперименты в чашке Петри

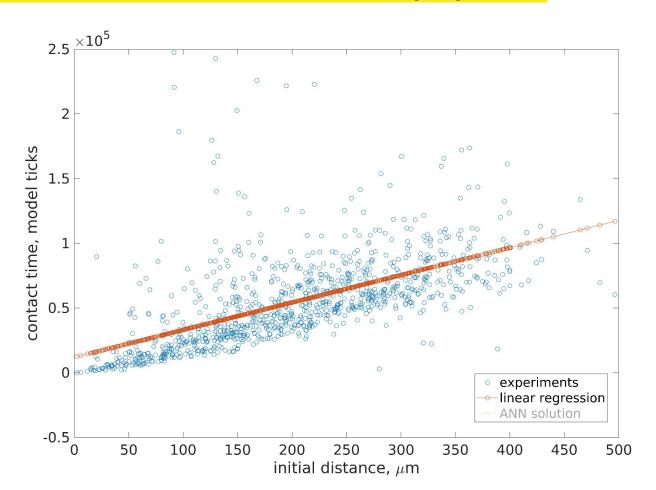
Эксперименты в чашке Петри : линейная регрессия

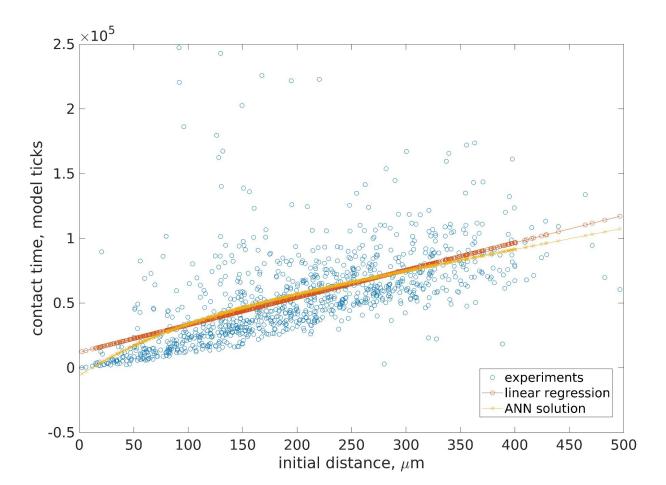


Эксперименты в чашке Петри : аппроксимация с ИНС



Сеть фибробластных ретикулярных клеток


• 400x400 мкм;


Эксперименты в сети ФРК

Эксперименты в сети ФРК : линейная регрессия

Эксперименты в сети ФРК : аппроксимация с ИНС

Значения, сильно выбивающиеся из общей тенденции, существенно искажают аппроксимирующую кривую; в перспективе, вероятно, лучше перейти к логарифмам значений.

Результаты работы на текущий момент

- Для 2D случая, был разработан эффективный алгоритм деформации тела клетки, позволяющий уменьшить время на моделирование индивидуального движения клетки в несколько раз (проведенные вычисления демонстрируют прирост производительности от 100% и более в сравнении с исходным методом).
- Показано, что использование простейших ИНС, позволяет эффективно обобщить информацию о зависимости времени контакта клетки и цели от изначального расстояния между ними в условиях различной структуры расчётной области.

Спасибо за внимание!