Влияние изгибной жёсткости и анизотропии перикарда на коаптационные характеристики восстановленного аортального клапана

Легкий А.А.¹, Саламатова В.Ю.^{1,2,3}

¹ИВМ РАН ²МФТИ(ГУ) ³Сеченовский университет

XIII конференция

«Математические модели и численные методы в биологии и медицине»

2 ноября 2021

Биомат-2021

Расположен на границе левого желудочка и аорты, препятствуя обратному току крови из аорты в левый желудочек

Стент аортального клапана

Шаблоны створок клапана на ткани перикарда

< ロ > < 回 > < 回 > < 回 > < 回 >

Коаптация как мера пригодности клапана

- Площадь коаптации
- Высота коаптации
- Центральная коаптация

Три коаптирующие створки, *h* - высота коаптации, *h*_c - центральная коаптация

Зона коаптации на одной створке (выделена тёмно-серым цветом)

A B > 4
 B > 4
 B

План будущей технологии

2 ноября 2021

Математическая формулировка задачи

• Уравнение механического равновесия в дифференциальной форме:

 $\operatorname{div} \sigma + \mathbf{b} = \mathbf{0} \ \mathbf{b} \ \Omega_t,$

где b - плотность внешних сил, действующих на тело

• Смешанные граничные условия [$\partial \Omega_t = \Gamma_u(t) \cup \Gamma_\sigma(t)$]:

х =
$$\overline{x}$$
 на $\Gamma_u(t), \ \sigma_n = 0$ на $\Gamma_\sigma(t)$

Математическая формулировка задачи

• Уравнение механического равновесия в дифференциальной форме:

 $\operatorname{div} \sigma + \mathbf{b} = \mathbf{0} \ \mathbf{b} \ \Omega_t,$

где b - плотность внешних сил, действующих на тело

• Смешанные граничные условия [$\partial \Omega_t = \Gamma_u(t) \cup \Gamma_\sigma(t)$]:

х
$$=\overline{x}$$
 на Г $_u(t), \ \sigma_{\sf n}=$ 0 на Г $_\sigma(t)$

• Принцип виртуальной работы в случае гиперупругого материала: найти такое х $\in \tilde{H}^1(\Omega_t) \stackrel{def}{=} \{ \vec{v} \in (H^1(\Omega_t))^3 : v = \overline{x} \text{ на } \Gamma_u \}$ что

$$\delta I = \delta (W - U) = 0,$$

где

$$\delta U = \frac{\partial}{\partial \mathsf{x}} \left(\int_{\Omega_{\mathbf{0}}} \psi(\nabla \mathsf{x}) d\Omega \right) \cdot \delta \mathsf{x}, \ \delta W = \int_{\Omega_{t}} \mathsf{b} \cdot \delta \mathsf{x} \ d\Omega$$

Математическая формулировка задачи

• Уравнение механического равновесия в дифференциальной форме:

 $\operatorname{div} \sigma + b = 0 \ \mathbf{B} \ \Omega_t,$

где b - плотность внешних сил, действующих на тело

• Смешанные граничные условия [$\partial \Omega_t = \Gamma_u(t) \cup \Gamma_\sigma(t)$]:

х
$$=\overline{x}$$
 на Г $_u(t), \ \sigma_{\sf n}=$ 0 на Г $_\sigma(t)$

• Принцип виртуальной работы в случае гиперупругого материала: найти такое х $\in \tilde{H}^1(\Omega_t) \stackrel{def}{=} \{ \vec{v} \in (H^1(\Omega_t))^3 : v = \overline{x} \text{ на } \Gamma_u \}$ что

$$\delta I = \delta (W - U) = 0,$$

где

$$\delta U = \frac{\partial}{\partial x} \left(\int_{\Omega_{\mathbf{0}}} \psi(\nabla \mathbf{x}) d\Omega \right) \cdot \delta \mathbf{x}, \ \delta W = \int_{\Omega_{t}} \mathbf{b} \cdot \delta \mathbf{x} \ d\Omega$$

• Приближение тонкой оболочки $\delta U = \delta U^{memb} + \delta U^{bend}$, δU^{memb} зависит от изменения линейных расстояний, δU^{bend} зависит от изменения кривизны оболочки

- Конформная согласованная треугольная сетка в исходной области Ω_0
- Переменная х P_1 конечные элементы
- Ассемблирование (S_i мн-во элементов, содержащих *i*-ый узел;):

$$\sum_{T_P \in S_i} \left(\mathsf{F}^{memb}_i(T_P) + \mathsf{F}^{ext}_i(T_P)
ight) = 0,$$
 где

мембр. упругость
$$\mathsf{F}_{i}^{memb}(T_{P}) = -\frac{\partial U^{memb}(T_{P})}{\partial \mathsf{Q}_{i}},$$

внешние силы $\mathsf{F}_{i,ext}(T_{P}) = \int_{T_{Q}} \mathsf{b}\lambda_{i} \, d\Omega.$

2d SVK: Delingette H., 2008

P.

Image: A matrix

To

Дискретизация

- Конформная согласованная треугольная сетка в исходной области Ω_0
- Переменная х P_1 конечные элементы
- Аппроксимация кривизны κ на патче треугольников 1
- Ассемблирование (*S_i* мн-во элементов, содержащих *i*-ый узел; П_{*i*} мн-во патчей, содержащих *i*-ый узел):

$$\sum_{T_P \in S_i} \left(\mathsf{F}_i^{memb}(T_P) + \mathsf{F}_i^{ext}(T_P)\right) + \sum_{\Pi_P \in \Pi_i} \left(\mathsf{F}_i^{bend}(\Pi_P)\right) = 0, \text{ где}$$

мембр. упругость
$$F_i^{memb}(T_P) = -\frac{\partial U^{memb}(T_P)}{\partial Q_i},$$

изгиб. упругость $F_i^{bend}(\Pi) = -\frac{\partial U^{bend}(T_P(\Pi))}{\partial Q_i},$
внешние силы $F_{i,ext}(T_P) = \int_{T_Q} b\lambda_i \, d\Omega.$

¹Oñate E., Flores F. G. Advances in the formulation of the rotation-free basic shell triangle) < >

A

 Близкая к физиологичной геометрия лепестка, вшитого в цилиндрическую аорту¹

¹https://sourceforge.net/projects/ani3d/

Постановка задачи

- Близкая к физиологичной геометрия лепестка, вшитого в цилиндрическую аорту¹
- Анизотропный материал (Gasser-Ogden-Holzapfel model) с физиологичными параметрами $\hat{W}(\mathbb{C}_{S}) = \mu/2(I_{1} + J^{-2} - 3) + \psi_{1} + \psi_{2}$ $\psi_{\alpha} = \theta(I_{4,\alpha}^{*} - 1) \left[\frac{k_{1}}{2k_{2}} \exp k_{2}(I_{4,\alpha}^{*} - 1)^{2} - 1 \right]$ $I_{4,\alpha}^{*} = \kappa(I_{1} + J^{-2}) + (1 - 3\kappa)I_{4,\alpha}$ $I_{1} = \operatorname{tr}\mathbb{C}_{S}, J^{2} = \det \mathbb{C}_{S},$ $I_{4,1} = f \cdot \mathbb{C}_{S} \cdot f, I_{4,2} = s \cdot \mathbb{C}_{S} \cdot s$

¹https://sourceforge.net/projects/ani3d/

- Близкая к физиологичной геометрия лепестка, вшитого в цилиндрическую аорту¹
- Анизотропный материал (Gasser–Ogden–Holzapfel model) с физиологичными параметрами
- Диастолическое давление (Р = 90 мм рт.ст.)
- Условие зажатия на закреплённой границе подобно хирургическому пришиванию

Image: Image:

¹https://sourceforge.net/projects/ani3d/

Чувствительность коаптации

Figure 1. Coaptation profiles for $\mu = 900$ kPa, $\kappa = 0.29$, varied θ on the unfolded template. Profiles for membrane are almost the same except the central zone; profiles for shell are almost the same.

Figure 2. Coaptation profiles for $\mu = 3000$ kPa, x = 0.29, varied θ on the unfolded template. Profiles for shell are superimposed on each other; profiles for membrane are almost the same.

Figure 3. Coaptation profiles for $\mu = 900$ kPa, $\theta = \pi/4$, varied x on the unfolded template.

Figure 4. Coaptation profiles for $\mu = 3000$ kPa, $\theta = \pi/4$, varied κ on the unfolded template. Profiles for shell are superimposed on each other; profiles for membrane are almost the same.

イロト イポト イヨト イヨト

Figure 15. Membrane, $\mu = 900$ kPa; isotropic (red); anisotropic $\kappa = 0.29$, $\theta = \pi/4$ (green); anisotropic $\kappa = 0.2$, $\theta = 0$ (blue).

Figure 16. Shell, $\mu = 900$ kPa; isotropic (red); anisotropic $\kappa = 0.29$, $\theta = \pi/4$ (green); anisotropic $\kappa = 0.2$, $\theta = 0$ (blue).

< ロ > < 回 > < 回 > < 回 > < 回 >

Прогиб "брюшной" области лепестка

Figure 11. Isotropic, membrane, $\mu = 900$ kPa. Initial configuration (green); deformed configuration (red).

Figure 12. Isotropic, shell, $\mu = 900$ kPa. Initial configuration (green); deformed configuration (red).

Figure 14. Anisotropic, $\mu = 3000$ kPa, $\kappa = 0.29$, $\theta = \pi/4$. Initial configuration (green); deformed shell (red); deformed membrane (blue).

• • • • • • • • • • • •

- Характеристики коаптации чувствительны к формулировке модели
- Оболочечный подход обеспечивает меньшую зону коаптации
- Разница в величине центральной коаптации между подходами может доходить до 1-2 мм (притом что физиологически сама центральная коаптация составляет 1-3 мм)
- Анизотропия материала створки существенно не влияет на характеристики коаптации (на идеальных геометриях)
- Анизотропия может повлиять на конфигурацию деформированной створки и вызвать её меньшее смещение, чем в изотропном случае.
- Жесткость материала влияет на зону коаптации: у более жесткого материала она меньше.

Спасибо за внимание!

Image: A math a math

Положение свободной границы для жёсткого материала

Figure 17. Membrane, $\mu = 3000$ kPa; isotropic (red); anisotropic $\kappa = 0.29$, $\theta = \pi/4$ (green); anisotropic $\kappa = 0.2$, $\theta = 0$ (blue).

Figure 18. Shell, $\mu = 3000$ kPa; isotropic (red); anisotropic $\kappa = 0.29$, $\theta = \pi/4$ (green); anisotropic $\kappa = 0.2$, $\theta = 0$ (blue).

• Параметризация тонкой оболочки

 $\mathcal{S}_0 = \{ \mathsf{X} \in \mathbb{R}^3 : \mathsf{X} = \mathsf{X}^m(\theta_1, \theta_2) + \theta_3 \mathsf{N}(\theta_1, \theta_2) \}$ - начальная конфигурация, $\mathcal{S}_t = \{ \mathsf{x} \in \mathbb{R}^3 : \mathsf{x} = \mathsf{x}^m(\theta_1, \theta_2) + \lambda \theta_3 \mathsf{n}(\theta_1, \theta_2) \}$ - актуальная конфигурация, где $(\theta_1, \theta_2) \in \mathcal{A}, \theta_3 \in [-H/2, H/2], H = H(\theta_1, \theta_2), \lambda = H_{def}/H$, N и п векторы нормали к соотв. пов-тям, X^m и x^m - срединные координаты

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

• Параметризация тонкой оболочки

 $\mathcal{S}_0 = \{ \mathsf{X} \in \mathbb{R}^3 : \mathsf{X} = \mathsf{X}^m(\theta_1, \theta_2) + \theta_3 \mathsf{N}(\theta_1, \theta_2) \}$ - начальная конфигурация, $\mathcal{S}_t = \{ \mathsf{x} \in \mathbb{R}^3 : \mathsf{x} = \mathsf{x}^m(\theta_1, \theta_2) + \lambda \theta_3 \mathsf{n}(\theta_1, \theta_2) \}$ - актуальная конфигурация, где $(\theta_1, \theta_2) \in \mathcal{A}, \theta_3 \in [-H/2, H/2], H = H(\theta_1, \theta_2), \lambda = H_{def}/H, \mathsf{N}$ и п векторы нормали к соотв. пов-тям, X^m и x^m - срединные координаты • Конвективная СК

 $\begin{array}{l} \mathsf{G}_{\alpha} = \frac{\partial \mathsf{X}}{\partial \theta_{\alpha}} = \mathsf{X}_{\alpha}^{m} + \theta^{3}\mathsf{N}, \ \mathsf{G}_{3} = \frac{\partial \mathsf{X}}{\partial \theta_{3}} = \mathsf{N} \\ \mathsf{g}_{\alpha} = \frac{\partial \mathsf{x}}{\partial \theta_{\alpha}} = \mathsf{x}_{\alpha}^{m} + \theta^{3}(\lambda\mathsf{n})_{\prime\alpha}, \ \mathsf{g}_{3} = \frac{\partial \mathsf{x}}{\partial \theta_{3}} = \lambda\mathsf{n} \end{array}$

- Параметризация тонкой оболочки $X = X^{m}(\theta_{1}, \theta_{2}) + \theta_{3} N(\theta_{1}, \theta_{2}); x = x^{m}(\theta_{1}, \theta_{2}) + \lambda \theta_{3} n(\theta_{1}, \theta_{2}) \}$ $(\theta_{1}, \theta_{2}) \in \mathcal{A}, \theta_{3} \in [-H/2, H/2], \lambda = H_{def}/H$ • Конвективная СК: $G_{i} = \frac{\partial X}{\partial \theta_{i}}, g_{i} = \frac{\partial X}{\partial \theta_{i}}$
- Правый тензор Коши-Грина

$$\mathbb{C} = \sum_{\alpha,\beta=1}^{2} c_{\alpha\beta} \mathsf{G}^{\alpha} \otimes \mathsf{G}^{\beta} + \lambda^{2} \mathsf{N} \otimes \mathsf{N} = \mathbb{C}_{S} + \mathbb{C}_{N}$$

 $c_{\alpha\beta} = a_{\alpha\beta} + 2\lambda \theta_3 \kappa_{\alpha\beta}$, $a_{\alpha\beta}$, $\kappa_{\alpha\beta}$ - метрич. и крив. тензоры пов-ти $X^m(\mathcal{A})$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

- Параметризация тонкой оболочки $X = X^{m}(\theta_{1}, \theta_{2}) + \theta_{3}N(\theta_{1}, \theta_{2}); x = x^{m}(\theta_{1}, \theta_{2}) + \lambda\theta_{3}n(\theta_{1}, \theta_{2}) \}$ $(\theta_{1}, \theta_{2}) \in \mathcal{A}, \theta_{3} \in [-H/2, H/2], \lambda = H_{def}/H$ • Конвективная СК: $G_{i} = \frac{\partial x}{\partial \theta_{i}}, g_{i} = \frac{\partial x}{\partial \theta_{i}}$
- Правый тензор Коши-Грина

$$\mathbb{C} = \sum_{\alpha,\beta=1}^{2} c_{\alpha\beta} \mathsf{G}^{\alpha} \otimes \mathsf{G}^{\beta} + \lambda^{2} \mathsf{N} \otimes \mathsf{N} = \mathbb{C}_{S} + \mathbb{C}_{N}$$

 $c_{\alpha\beta} = a_{\alpha\beta} + 2\lambda\theta_3\kappa_{\alpha\beta}$, $a_{\alpha\beta}$, $\kappa_{\alpha\beta}$ - метрич. и крив. тензоры пов-ти $X^m(\mathcal{A})$ • Второй тензор Пиолы-Кирхгофа

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

 $\psi(\mathbb{C})$ + усл. несжим. det $\mathbb{C} = 1 \Rightarrow \hat{\psi}(\mathbb{C}_{S})$ $\mathbb{S} = 2 \sum_{\alpha,\beta=1}^{2} \frac{\partial \hat{\psi}}{\partial c_{\alpha\beta}} \mathsf{G}^{\alpha} \mathsf{G}^{\beta} = 2 \sum_{\alpha,\beta=1}^{2} s^{\alpha\beta} \mathsf{G}^{\alpha} \mathsf{G}^{\beta}$

 Параметризация тонкой оболочки $X = X^{m}(\theta_{1}, \theta_{2}) + \theta_{3}N(\theta_{1}, \theta_{2}); x = x^{m}(\theta_{1}, \theta_{2}) + \lambda\theta_{3}n(\theta_{1}, \theta_{2}) \}$ $(\theta_1, \theta_2) \in \mathcal{A}, \theta_3 \in [-H/2, H/2], \lambda = H_{def}/H$ • Конвективная СК: $G_i = \frac{\partial X}{\partial \theta_i}, g_i = \frac{\partial x}{\partial \theta_i}$ • Правый тензор Коши-Грина: $\mathbb{C} \Rightarrow \mathbb{C}_{S} \sim c_{\alpha\beta} = a_{\alpha\beta} + 2\lambda \theta_{3} \kappa_{\alpha\beta}$ • Второй тензор Пиолы-Кирхгофа: $\mathbb{S} \sim s^{lphaeta} = 2 rac{\partial \psi(\mathbb{C}s)}{\partial c}$ • Вариация внутренней энергии $\delta U = \int_{\Omega_0} \delta \left(\psi(\nabla \mathsf{x}) \right) d\Omega = \int_{\Omega_0} \delta \left(\hat{\psi}(\nabla \mathsf{x}) \right) d\Omega = \int_{\Omega_0} \delta \left(\mathbb{C}_{\mathcal{S}} \right) : \frac{\partial \hat{\psi}}{\partial \mathbb{C}_{\mathcal{S}}} d\Omega =$ $\int_{\Omega_{2}} \delta\left(\frac{1}{2}c_{\alpha\beta}\right) s^{\alpha\beta} d\Omega = \left[dA = \left| \mathsf{G}_{1} \times \mathsf{G}_{2} \right| d\theta_{1} d\theta_{2} \right] =$ $\int_{\mathcal{A}} \delta\left(\frac{1}{2} a_{\alpha\beta}\right) \begin{pmatrix} H/2 \\ \int \\ -H/2 \end{pmatrix} s^{\alpha\beta} d\theta_3 dA + \int_{\mathcal{A}} \lambda \delta(\kappa_{\alpha\beta}) \begin{pmatrix} H/2 \\ \int \\ -H/2 \end{pmatrix} \theta_3 s^{\alpha\beta} d\theta_3 dA \sim$ $\sim \delta U = \delta U^{memb} + \overline{\delta U^{bend}}$