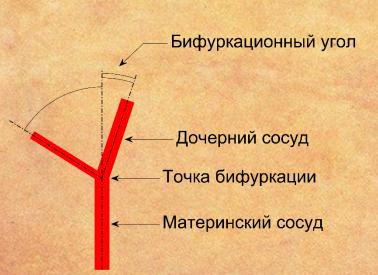
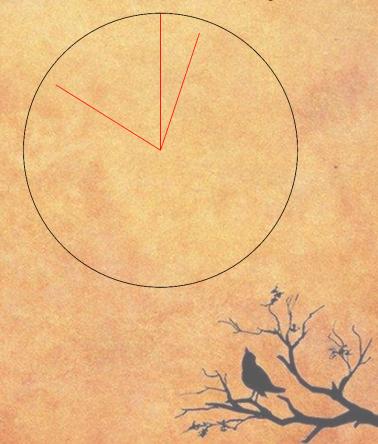

Компьютерное моделирование артериальной системы мозга крысы

Копылова В.С., Бороновский С.Е., Нарциссов Я.Р.

kopilova.veronika@yandex.ru

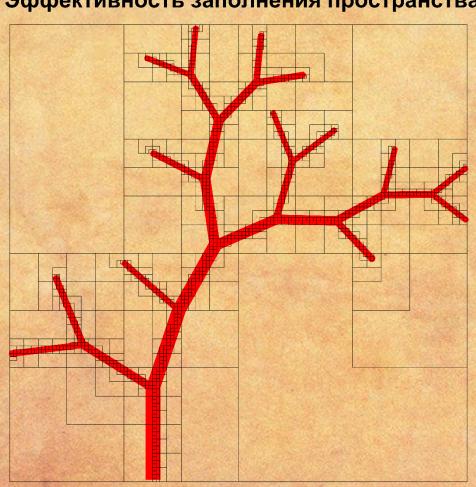
- ВВЕДЕНИЕ
- МОДЕЛЬ АРТЕРИАЛЬНОЙ СИСТЕМЫ
- СТРУКТУРНЫЙ АНАЛИЗ
- ТОПОЛОГИЧЕСКИЙ АНАЛИЗ
- ФИЗИОЛОГИЧЕСКИЕ ПАРАМЕТРЫ


Артериальная система мозга крысы

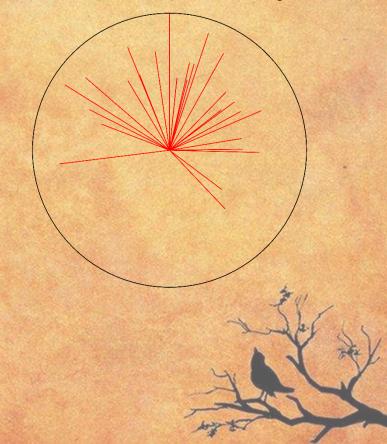

<u>Артерии Виллизиева круга (ВК)</u> <u>мозга крысы</u>

- внутренняя сонная артерия
- позвоночные артерии
- базилярная артерия (БА)
- средняя мозговая артерия (СМА)
- передняя мозговая артерия

Представление



Анизотропия роста сосудов



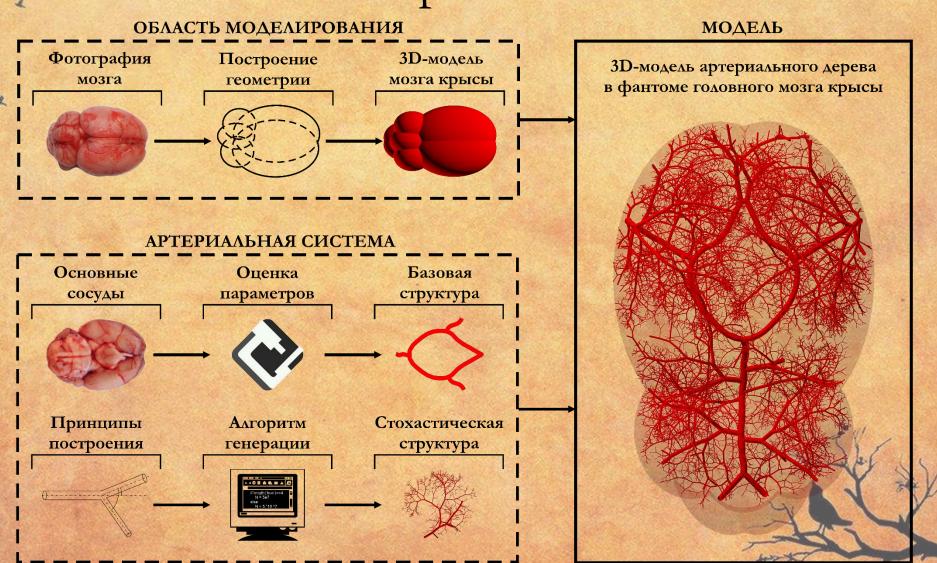
Представление

Эффективность заполнения пространства

Анизотропия роста сосудов

Модели артериальной системы

Модель	Бифуркационные параметры	Литературные данные		
Артериальное дерево мозга человека	y = 2,76	Bui, A. V., et al., 2010		
Артериальное дерево печени человека	y = 3.0	Schwen, L. O. and Preusser, T., 2012		
Трёхмерные артериальные деревья	y = 2,55	Karch, R., et al., 2003		
Трёхмерные артериальные деревья	$\gamma = 2,55$	Karch, R., et al., 2000		
Абстрактные двумерные деревья	$\lambda = 0.794$	Cohn, D., 1955		


Патологии артериальной системы

Анализ	Болезнь	Литературные данные	
Радиусы сосудов		Klein, R., et al., 2000	
	Гипертония	Nguyen, T. T., et al., 2007	
	Заболевания периферических сосудов	Chapman, N., et al., 2002	
	Ишемический инсульт	Witt, N., et al., 2006	
	Гиперинтенсивность белого вещества	Doubal, F. N., et al., 2010	
Бифуркационные	Уменьшение логической памяти	Patton, N., et al., 2007	
углы	Гипертония	Stanton, A. V., et al., 1995	
Фрактальная размерность	Болезнь Альцгеймера	Cheung, C.Y., et al., 2014	
	Когнитивная дисфункция	Cheung, C.Y., et al., 2014	
	Ишемический инсульт	Ong, Y.T., et al., 2013	
	Гипертония	Zhu, P., et al., 2014	

- ВВЕДЕНИЕ
- МОДЕЛЬ АРТЕРИАЛЬНОЙ СИСТЕМЫ
- СТРУКТУРНЫЙ АНАЛИЗ
- ТОПОЛОГИЧЕСКИЙ АНАЛИЗ
- ФИЗИОЛОГИЧЕСКИЕ ПАРАМЕТРЫ

Модель артериальной системы мозга

крысы

Моделирование сосудистой системы: базовая структура

Основные артерии головного мозга представляют собой детерминированную структуру:

- Представление артерий детерминированной части было реализовано в виде упорядоченной совокупности цилиндров
- Для каждого из цилиндров задавались радиусы и координаты центров их оснований, где радиус цилиндра соответствовал радиусу сосуда
- Диаметры основных артерий были рассчитаны на основе изображений сосудов мозга крысы

Геометрические параметры базовой структуры

	Диаметр сосудов(d), мм		Литературные	Длина	Литературные
4	Эксперимент	Литература	данные	сосудов (L), мм	данные
Базилярная артерия	0,39 ± 0,03	0,38 ÷ 0,40	Bao, L., et al., 1997	7,7	Paxinos, G., 2004
Средняя мозговая артерия	0,35 ± 0,04	0,32 ÷ 0,34		5,9	
Артерии Виллизиева круга	0,34 ± 0,03	0,34 ÷ 0,36		11,9	
Позвоночная артерия	0,36 ± 0,02	0,32 ÷ 0,34	Paxinos, G., 2004	3,2	

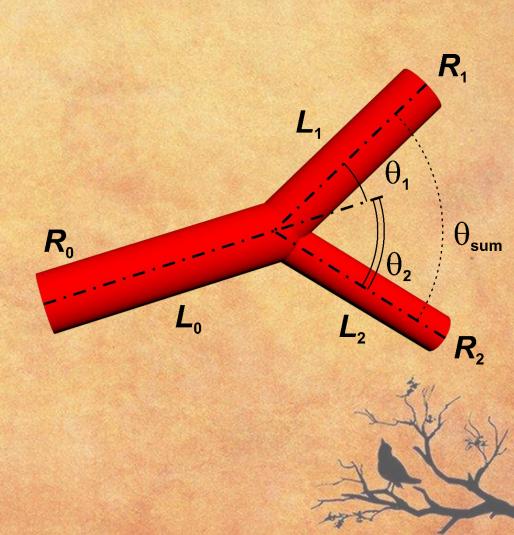
Моделирование сосудистой системы: стохастическая структура

Мелкие сосуды были выделены в отдельную стохастическую структуру:

- Стохастическая часть реализуется в виде бинарного дерева
- Каждый сосуд представляет собой жесткую трубку
- Нулевой уровень образуют единичные элементы, родительскими для которых являются сосуды базового уровня
- Для ветви нулевого уровня задаются радиус, длина и координаты ее начала
- Дочерние ветви генерируются в соответствии с принципами построения сосудистой системы

Принципы построения артериального дерева

Взаимосвязь геометрических параметров:


$$R_0^{\gamma} = R_1^{\gamma} + R_2^{\gamma}$$
$$L_{1,2} = \lambda \cdot L_0$$

 R_0 , R_1 , R_2 – радиусы материнской и дочерних ветвей

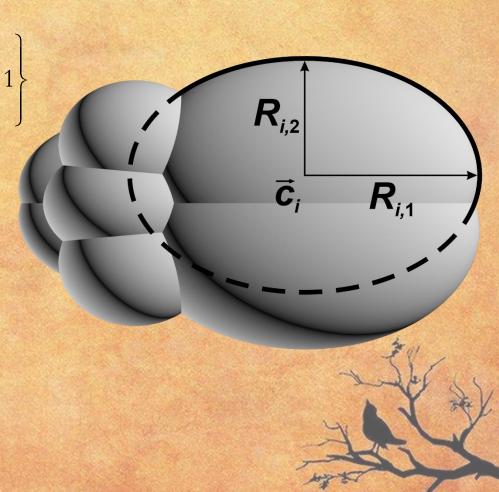
у – показатель ветвления

 θ_1 , θ_2 – бифуркационные углы левого и правого дочерних сегментов

λ – показатель затухания длины ветви

Принципы построения артериального дерева

Дополнительные ограничения:

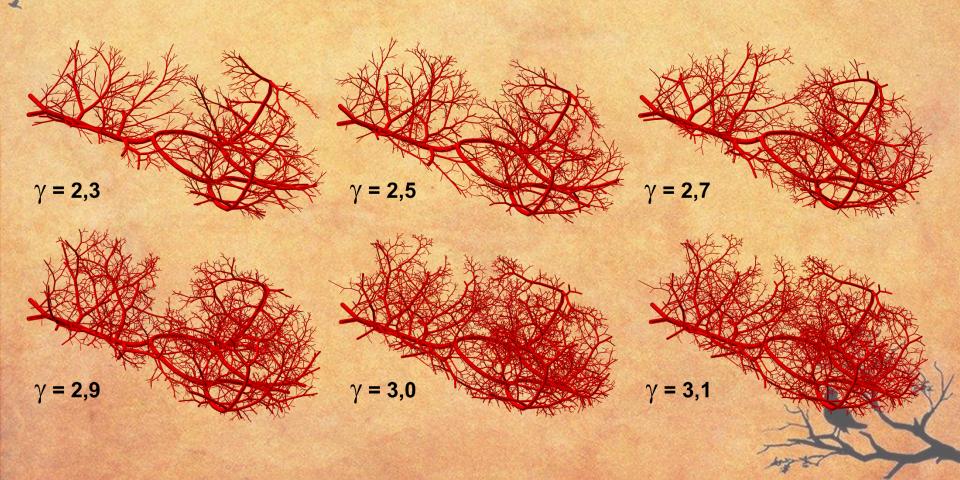

$$\Omega = \bigcup_{i} E_{i}; \quad E_{i} = \left\{ \vec{x} : \sum_{j=1}^{3} \left(\frac{x_{j} - c_{i,j}^{ellipsoid}}{R_{i,j}^{ellipsoid}} \right)^{2} \le 1 \right\}$$

 $R \ge R_{Low}$

 $c_{i,j}$ – координаты центра полуосей i-го эллипсоида

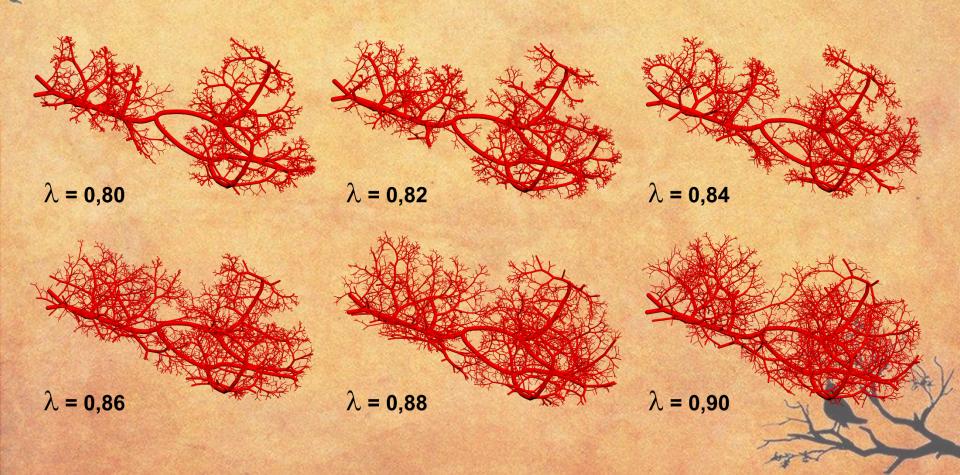
 $R_{i,j}$ – величины полуосей i-го эллипсоида

 R_{Low} – минимальный радиус сосуда


Алгоритм построения единичной бифуркации

Примеры 3D-моделей артериального дерева

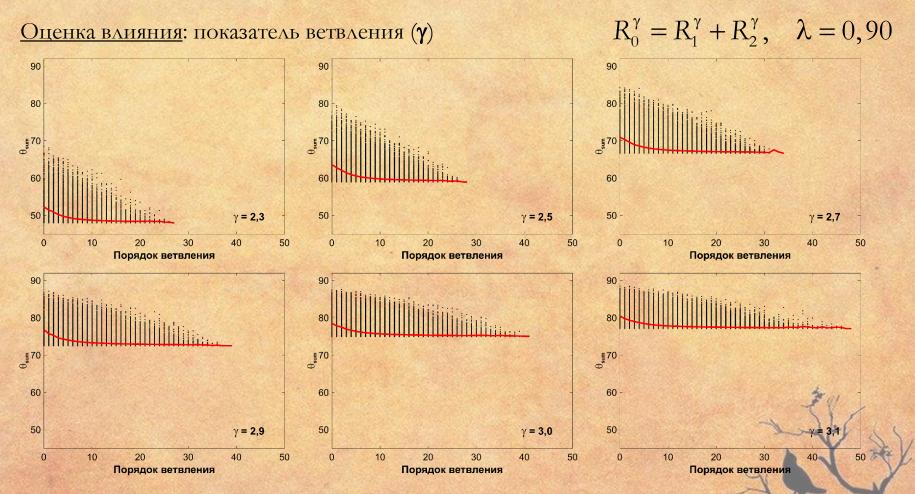
Оценка влияния: показатель ветвления (у)


$$R_0^{\gamma} = R_1^{\gamma} + R_2^{\gamma}, \quad \lambda = 0.90$$

Примеры 3D-моделей артериального дерева

Оценка влияния: показатель затухания длины (λ)

$$L_{1,2} = \lambda \cdot L_0, \quad \gamma = 3,0$$

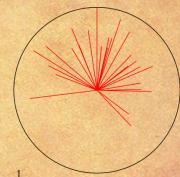


Анализ и применение модели артериального дерева

- ВВЕДЕНИЕ
- МОДЕЛЬ АРТЕРИАЛЬНОЙ СИСТЕМЫ
- СТРУКТУРНЫЙ АНАЛИЗ
- ТОПОЛОГИЧЕСКИЙ АНАЛИЗ
- ФИЗИОЛОГИЧЕСКИЕ ПАРАМЕТРЫ

Структурный анализ: суммарный угол

Согласно экспериментальным и теоретическим расчётам нижняя граница для оптимального значения суммарного угла бифуркации составляет **75°** [Schreiner, W., et al., 1994].

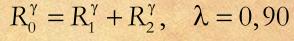

- ВВЕДЕНИЕ
- МОДЕЛЬ АРТЕРИАЛЬНОЙ СИСТЕМЫ
- СТРУКТУРНЫЙ АНАЛИЗ
- ТОПОЛОГИЧЕСКИЙ АНАЛИЗ
- ФИЗИОЛОГИЧЕСКИЕ ПАРАМЕТРЫ

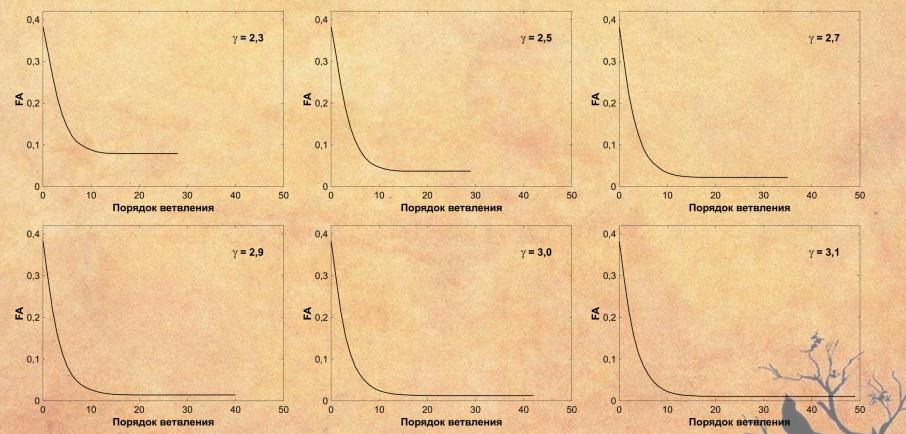
Анализ топологии: анизотропия

- Фракционная анизотропия (*FA*) определяет распределение плотности сосудов по различным направлениям
- Эффективность оценки как для модельных систем, так и для оцифрованных медицинских данных, в сравнении с расчётом суммарных углов бифуркации
 - необходимы только координаты точек бифуркации
 - простота расчёта

$$\vec{v}_k = \vec{x}_{k,t} - \vec{x}_{k,o}; \quad k = 1:n$$

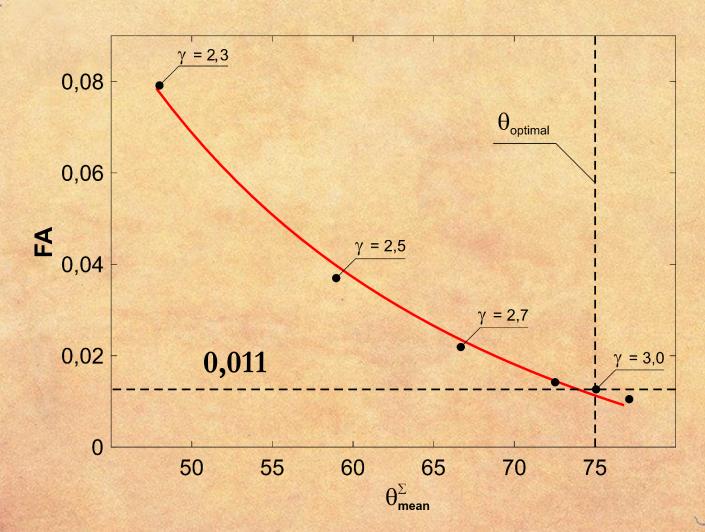
$$S = \frac{1}{n} \sum_{k=1}^{n} \frac{\vec{v}_k \otimes \vec{v}_k}{\|\vec{v}_k\|}$$



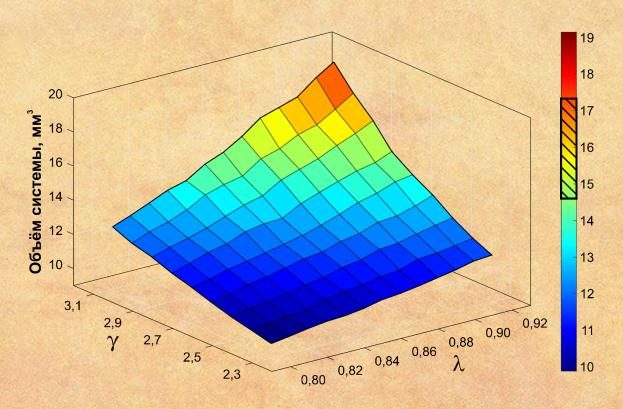

$$FA = \left[\frac{3}{2} \cdot \sum_{i=1}^{3} \left(\lambda_{i} - \overline{\lambda}\right)^{2} / \sum_{i=1}^{3} \lambda_{i}^{2}\right]^{\frac{1}{2}}$$

S — средневзвешенная ковариационная матрица $\lambda_3 \ge \lambda_2 \ge \lambda_1$ — собственные значения матрицы S $\overline{\lambda} = \frac{1}{3} \sum_{i=1}^{3} \lambda_i$ — среднее собственных значений

Анализ топологии: анизотропия


Оценка влияния: показатель ветвления (у)

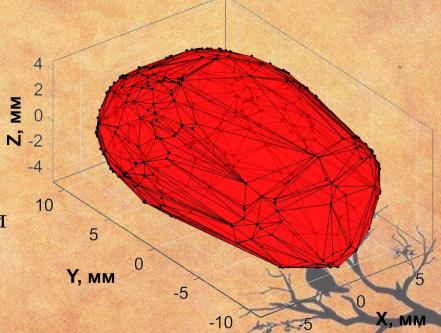
MART


Анализ топологии: анизотропия

Согласно экспериментальным и теоретическим расчётам нижняя граница для оптимального значения суммарного угла бифуркации составляет **75°** [Schreiner, W., et al., 1994].

- ВВЕДЕНИЕ
- МОДЕЛЬ АРТЕРИАЛЬНОЙ СИСТЕМЫ
- СТРУКТУРНЫЙ АНАЛИЗ
- ТОПОЛОГИЧЕСКИЙ АНАЛИЗ
- ФИЗИОЛОГИЧЕСКИЕ ПАРАМЕТРЫ

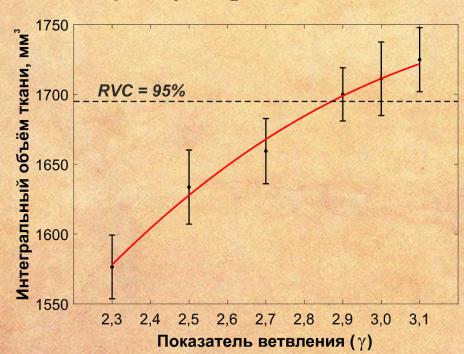
Анализ физиологических параметров: объём артериальной системы


объём артериальной крови в мозге крысы [Kim, T., Kim, S.G., 2011]

Оценка суммарного кровотока через артериальную систему мозга крысы:

- **CBF** = $50,3\pm0,2$ мм³/с при значениях $\gamma = 3,0$ и $\lambda = 0,90$
- **CBF** = $50,3 \text{ mm}^3/\text{c}$ [Shockley, R.P., et al., 1988]

Анализ физиологических параметров: интегральный объём ткани


- Необходимость оценки объёма ткани, снабжаемого всей системой в целом
- Анализ покрытия относительно объёма мозга (*RVC*)
- Алгоритм быстрой оболочки «Quickhull»
 - входные данные массив координат узлов дерева
 - выходные данные интегральный объём области снабжения

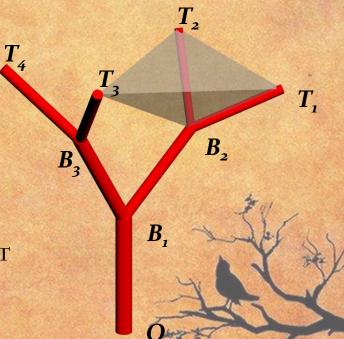
Анализ физиологических параметров: интегральный объём ткани

Оценка влияния: показатель ветвления (у)

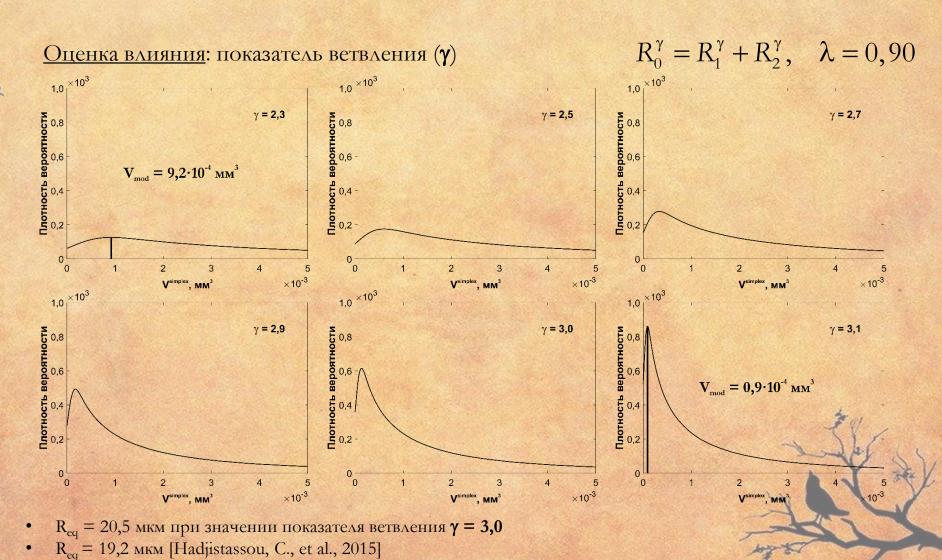
$$R_0^{\gamma} = R_1^{\gamma} + R_2^{\gamma}, \quad \lambda = 0.90$$

показатель затухания длины (λ)

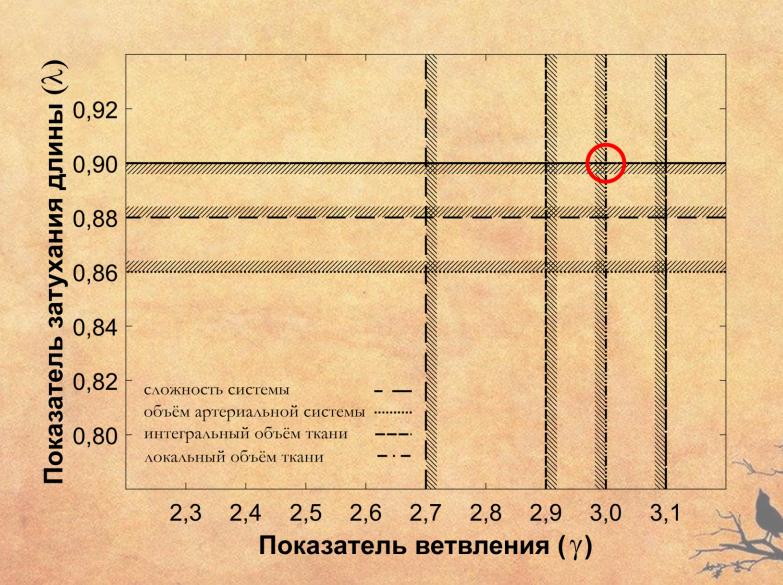
$$L_{1,2} = \lambda \cdot L_0, \quad \gamma = 3,0$$

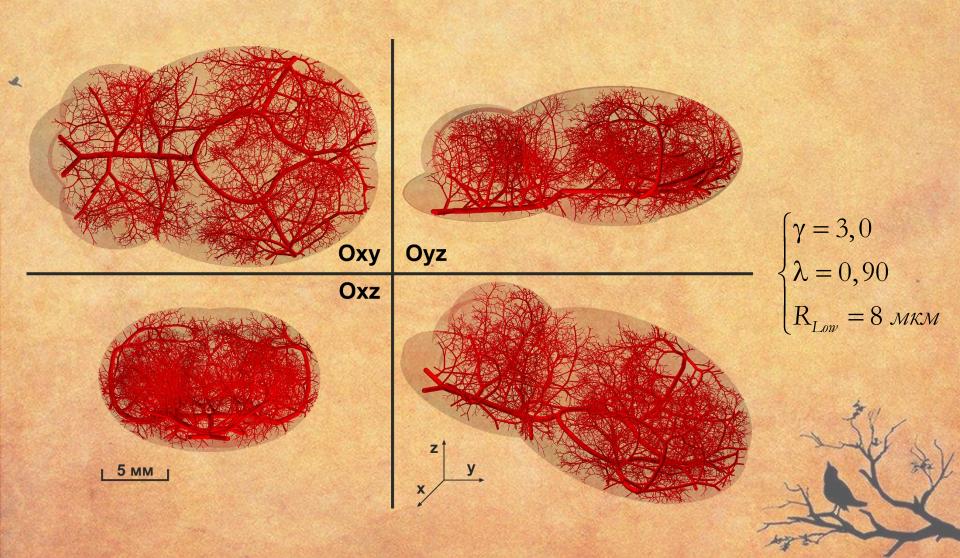


RVC— Интегральный объём ткани, выраженный в процентах относительно объёма мозга крысы


Применение триангуляции Делоне для сегментирования модели

- Входные данные массив координат узлов артериального дерева
 - Единичный элемент симплекс на четырех узлах дерева
 - Необходимые свойства:
 - единственна для набора точек
 - отсутствие узлов внутри сферы,
 описанной вокруг симплекса
 - множество рёбер симплексов включает в себя все сосуды системы


 $\{B_2 \ T_1 \ T_2 \ T_3\}$ — пример многогранника, соответствующего области ткани, которая снабжается ближайшими сосудами


Анализ физиологических параметров: элементарный объём области ткани

Анализ модели артериального дерева

Модель артериального дерева с оптимальными параметрами

Спасибо за внимание!