Математическая модель поведения лактата и кислорода в системе микроциркуляции

Кислухина Е.В.¹, Кислухин В.В.²

¹ГБУЗ НИИ СП им. Н.В. Склифосовского ДЗ, Москва, ²Медисоник, РОССИЯ

Элементы биохимии

Будем рассматривать следующую схему потребления O_2 .

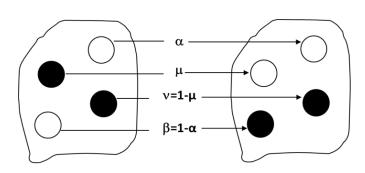
Пусть для энергетических нужд сжигается глюкоза (игнорируем окисление жиров и/или белков, другими словами дыхательный коэффициент = 1). Примем, что глюкоза переводит АДФ в АТФ, сначала анаэробно, образуя лактат, который частично в цикле Кребса, уже аэробно с участием O_2 , перейдёт в CO_2 и воду, а также будет уходить в кровь.

Элементы биохимии

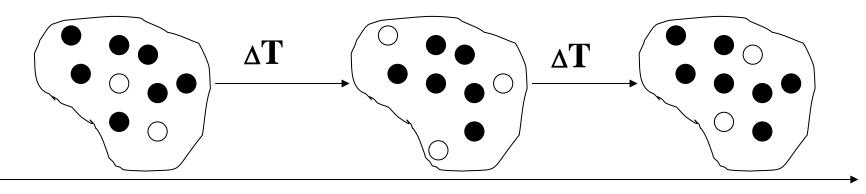
При нехватке O_2 (гипоксия) растет количество лактата в тканях и крови. В клинике гипоксия тканей возникает, обычно, при проблемах с дыханием (низкая оксигенация артериальной крови), при кровопотере (снижается сердечный выброс и низкий гематокрит), а также нарушениях микроциркуляции («шунтирование»). При этом разрешение гипоксии не ведет сразу к нормализации лактата крови

Цель сообщения.

Предложить математическую модель «сопряжения» O_2 и лактата для выявления факторов микроциркуляции определяющих соотношение между оксигенацией венозной крови и концентрацией лактата.


Кровоток и движение индикатора по микроциркуляции. Схема Крога-Цвейфаха

- 1.В покое перфузируется только часть микрососудов, мышцы 3-5%, мозг до 30%
- 2. Окраска микрососудов на срезе зависит от времени инфузии чем дольше инфузия, тем больше микрососудов окрашено.

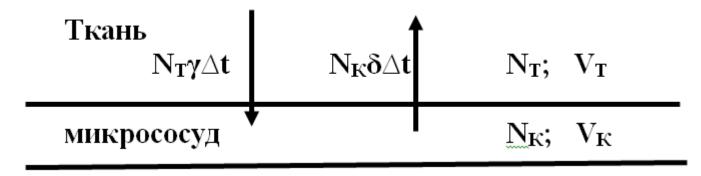

Krogh A.: The anatomy and physiology of capillaries. New York, 1959

Zweifach BW: Functional Behavior of the Microcirculation. Springfield, Illinois, 1961.

Приведенные 2 пункта означают, что происходит «перемещение» открытости микрососудов по ткани.

Две характеристики микроциркуляции

- открытые микрососуды
- - закрытые микрососуды


Время

- (a) средняя доля открытых сосудов $n_o = \mu/(\beta + \mu)$,
- б) скорость перехода микрососудов из одного состояния в другое, ${\bf R}={\bf \beta}+{\bf \mu}.$

$$V_0 = \frac{\mu}{\mu + \beta}$$
 Артериолы, $z_1(t)$ Открытые микрососуды, $z_2(t)$ Венулы, $z_4(t)$ β μ Закрытые микрососуды, $z_3(t)$ $\nu=1-\mu$

Диффузия

Каждый микрососуд доставляет и забирает O_2 и лактат. Схема обмена кровь-ткань приведена на рисунке. Обозначим N_K – количество диффундирующего субстрата в микрососудах, а N_T – количество частичек (могущих диффундировать) в ткани. Тогда поток частиц из сосуда, за время Δt , будет $N_K \delta \Delta t$, а поток из ткани $N_T \gamma \Delta t$

δ и Υ – интенсивности перехода частичек из/в микрососуд

Условно приняв объем разведения для O_2 (это объем крови и ткани $(V_T + V_K)$) за 1, получим эти объемы как фракции:

$$\mathbf{V}_{\mathrm{K}} = \frac{\mathbf{\gamma}}{\mathbf{\gamma} + \mathbf{\delta}}; \quad \mathbf{V}_{\mathrm{T}} = \frac{\mathbf{\delta}}{\mathbf{\gamma} + \mathbf{\delta}}$$

Предположения

1) Фракции объемов открытых и закрытых микрососудов совпадают с фракциями объемов тканей, находящихся рядом с открытыми и закрытыми микрососудами;	$V_{\rm O} = \frac{\mu}{\mu + \beta}$	$V_3 = \frac{\beta}{\mu + \beta}$
2) Объемы разведения для лактата и ${\rm O_2}$ совпадают, другими словами выражения для объемов Vк и Vт справедливы и для ${\rm O_2}$ и лактата.	$V_{\rm K} = \frac{\gamma}{\gamma + \delta}$	$V_{\rm T} = \frac{\delta}{\gamma + \delta}$

- 2a) Это означает, что интенсивность перехода ткань-кровь для лактата и ${\rm O_2}$ связаны некоторым параметром, обозначим его α
- 3) Примем, что ткань однородна и интенсивность выработки лактата, k, величина постоянная;
- 4) Поглощение O_2 зависит от количества лактата в ткани и количества O_2 в ткани (от их произведения), интенсивность утилизации обозначим ко

Примем, что поглощение кислорода пропорционально произведению лактата и кислорода

Количество лактата, L, и кислорода, O2, в [mmol], их обозначения:			
Открытые микрососуды и	Закрытые микрососуды и	Структуры	
ткани вокруг них	ткани вокруг		
L_{1k}, O_{1k}	L_{2k} , O_{2k}	Микрососуды	
L_{1T} , O_{1T}	L_{2T} , O_{2T}	Ткань вокруг микрососудов	

Уравнения модели

Эволюция кислорода. 1 моль лактата «потребляет» 3 моля O_2

Изменение	Вазомоции	Диффузия	Источники
$O_{1K}(t + \Delta t) =$	$(\mu O_{2K}(t) - \beta O(t)) \Delta t$	$[\gamma 0_{1T}(t) - \delta 0(t)]\Delta t$	+O(t)
$0_{1\mathrm{T}}(t+\Delta t)-0_{1\mathrm{T}}(t)=$	$(\mu O_{2T}(t) - \beta O_{1T}(t))\Delta t$	$[-\gamma 0_{1\mathrm{T}}(t) + \delta 0(t)]\Delta t$	$-\mathrm{k_o}L_{1T}(t)\mathrm{O_{1T}(t)}\Delta\mathrm{t}$
$O_{2K}(\boldsymbol{t} + \Delta \boldsymbol{t}) - O_{2K}(\boldsymbol{t}) =$	$[-\mu O_{2K}(t) + \beta O(t)] \Delta t$	$[\gamma O_{2T}(t) - \delta O_{2K}(t)] \Delta t$	0
$O_{2T}(\boldsymbol{t} + \Delta \boldsymbol{t}) - O_{2T}(\boldsymbol{t}) =$	$[-\mu O_{2T}(t) + \beta O_{1T}(t)] \Delta t$	$[-\gamma O_{2T}(t) + \delta O_{2K}(t) \Delta t]$	$-k_oO_{2T}\!(t)L_{2T}(t)\Delta t$

Эволюция лактата

Изменение	Вазомоции	Диффузия	«Источники»
$L_{1k}(t+\Delta t)$ =	$[\mu L_{2k}(t) - \beta L_{ka}(t)] \Delta t$	$[\alpha \gamma L_{1T}(t) - \alpha \delta L_{ka}(t)] \Delta t$	$+\mathbf{L}_{\mathrm{Ka}}(\mathbf{t})$
$L_{1T}(t+\Delta t)-L_{1T}(t)=$	$[\mu L_{2T}(t) - \beta L_{1T}(t)] \Delta t$	$-[\alpha \gamma L_{1T}(t) - \alpha \delta L_{ka}(t)] \Delta t$	$[\mathbf{kV}_{\mathrm{OT}} - \mathbf{k}_{\mathrm{L}} L_{1T}(t) \mathbf{O}_{\mathrm{1T}}(t)] \Delta t$
$L_{2k}(t+\Delta t)-L_{2k}(t)$ =	$[-\mu L_{2k}(t) + \beta L_{ka}(t)]\Delta t$	$[\alpha \gamma L_{2T}(t) - \alpha \delta L_{2K}(t)] \Delta t$	0
$L_{2T}(t+\Delta t)-L_{2T}(t)=$	$[-\mu L_{2T}(t) + \beta L_{1T}(t)]\Delta t$	$[-\alpha \gamma L_{2T}(t) + \alpha \delta L_{2k}(t)] \Delta t$	$[kV_{3T}-k_LO_{2T}(t) L_{2T}(t)]\Delta t$

Коэффициенты модели

Изменение	Вазомоции	Диффузия	Источники
$O_{1K}(t + \Delta t)$	$(\mu O_{2K}(t) - \beta O(t))\Delta t$	$[\gamma 0_{1\mathrm{T}}(t) - \delta 0(t)]\Delta t$	+O(t)
$0_{1\mathrm{T}}(t+\Delta t)-0_{1\mathrm{T}}(t)$	$(\mu O_{2T}(t) - \beta O_{1T}(t))\Delta t$	$[-\gamma 0_{1T}(t) + \boldsymbol{\delta} 0(t)] \Delta t$	$-\operatorname{k_o} L_{1T}(t)\operatorname{O}_{1T}(t)\Deltat$
$O_{2K}(t + \Delta t) - O_{2K}(t)$	$[-\mu O_{2K}(t) + \boldsymbol{\beta} \mathbf{O}(t)] \Delta t$	$[\gamma O_{2T}(t) - \delta O_{2K}(t)]\Delta t$	0
$O_{2T}(t + \Delta t) - O_{2T}(t)$	$[-\mu O_{2T}(t) + \beta O_{1T}(t)] \Delta t$	$[-\gamma O_{2T}(t) + \delta O_{2K}(t) \Delta t]$	$-\mathrm{k_o}\mathrm{O}_{\mathrm{2T}}\!(\mathrm{t})L_{2T}(t)\Delta t$

Изменение	Вазомоции	Диффузия	«Источники»
$L_{1k}(t+\Delta t)$	$[\mu L_{2k}(t) - \beta L_{ka}(t)] \Delta t$	$[\alpha \gamma L_{1T}(t) - \alpha \delta L_{ka}(t)] \Delta t$	+ $\mathbf{L}_{\mathrm{Ka}}(\mathbf{t})$
$L_{1T}(t+\Delta t)-L_{1T}(t)$	$[\mu L_{2T}(t) - \beta L_{1T}(t)] \Delta t$	$-[\alpha \gamma L_{1T}(t) - \alpha \delta L_{ka}(t)] \Delta t$	$[\mathbf{kV}_{OT} - \mathbf{k}_{L} L_{1T}(t) \mathbf{O}_{1T}(t)] \Delta t$
$L_{2k}(t+\Delta t)-L_{2k}(t)$	$[-\mu L_{2k}(t) + \beta L_{ka}(t)]\Delta t$	$[\alpha \gamma L_{2T}(t) - \alpha \delta L_{2K}(t)] \Delta t$	0
$L_{2T}(t+\Delta t)-L_{2T}(t)$	$[-\mu L_{2T}(t) + \beta L_{1T}(t)] \Delta t$	$[-\alpha \gamma L_{2T}(t) + \alpha \delta L_{2k}(t)] \Delta t$	$[kV_{3T} - k_LO_{2T}(t) L_{2T}(t)]\Delta t$

Параметры модели	Значение
Скорость вазомоций, R=β+μ	Исследование микроциркуляции с помощью ЛДФ
$\beta = 0.018$	Интенсивность перехода открытый/закрытый, определяется кровотоком
$\delta = 0.2$	Интенсивность перехода кровь/ткань (литературные данные)
$V_{\rm K}/V_{\rm Tk} = \gamma/\delta = 0.03$	Отношение объема крови в микрососудах к весу ткани
$k_0 = 0.1$	Интенсивность поглощения кислорода
O(t)=1	поступление кислорода с кровью
α =0.5	отношение диффузий лактат/кислород
$\kappa = 0.1$	генерация лактата
$\kappa_{\rm L} = ({ m моль} \ { m лак})/({ m моль} \ { m O}_2)$	Моль лактата сжигается тремя молями кислорода
$L_{ka}(t)=0.3$	поступление лактата с кровью

Влияние скорости вазомоций, ${\bf R}$, на количество ${\bf O}_2$ и лактата в оттекающей крови в зависимости от выработки лактата

 \rightarrow -k=0.07

---k=0.08

<u></u>--k=0,09

—k=0,1 —k=0,11

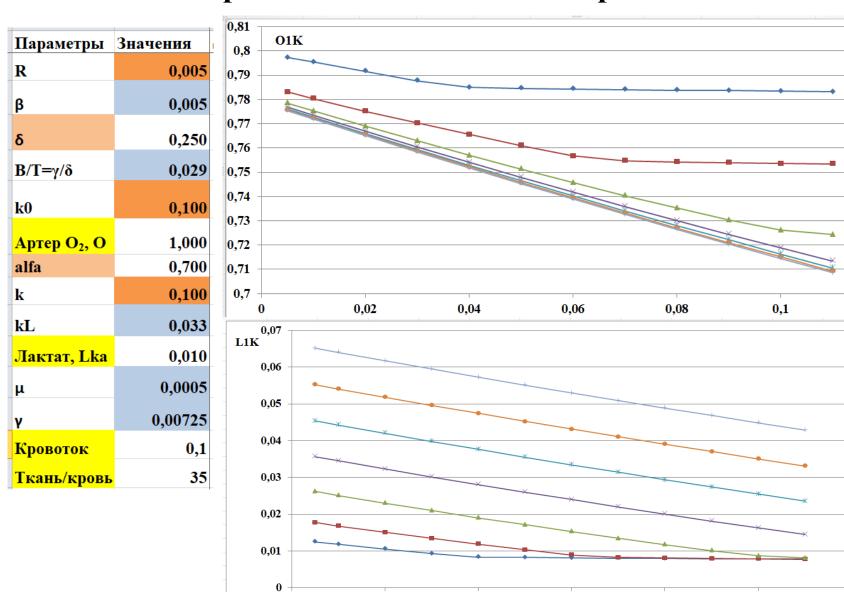
--k=0,12

---k=0.13

0,12

R

→ k=0.07


-k=0.08

-k=0.09

---k=0,13

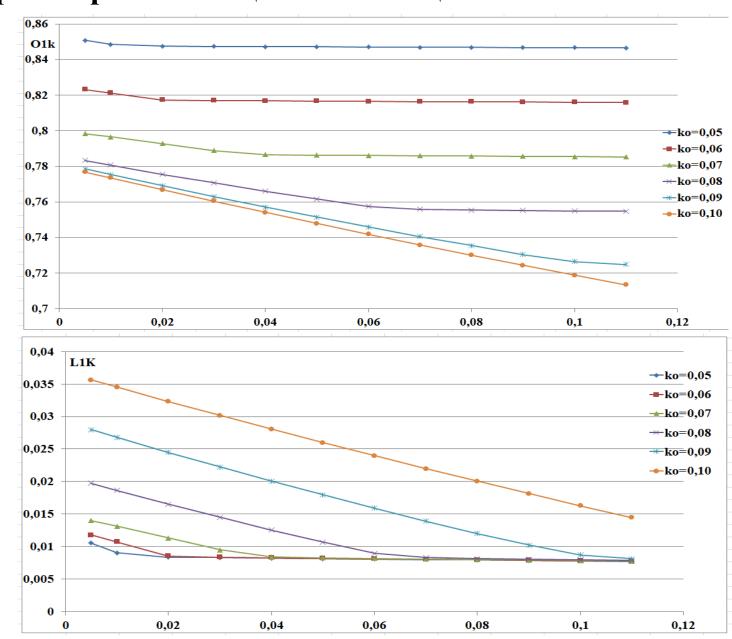
R

0,12

0

0.02

0.04


0,06

0.08

0.1

Влияние скорости вазомоций, ${\bf R}$, на количество ${\bf O}_2$ и лактата в оттекающей крови при меняющемся поглощении лактата

Параметры	Значения
R	0,005
β	0,005
δ	0,250
Β/Τ=γ/δ	0,029
k0	0,100
Артер О 2, О	1,000
alfa	0,700
k	0,100
kL	0,033
Лактат, Lka	0,010
μ	0,0005
γ	0,00725
Кровоток	0,1
Ткань/кровь	35

Выводы

- Предложена математическая модель взаимодействия лактата и кислорода при их прохождении по ткани
- Проанализированы соотношения между оксигенацией венозной крови и концентрацией в ней лактата.