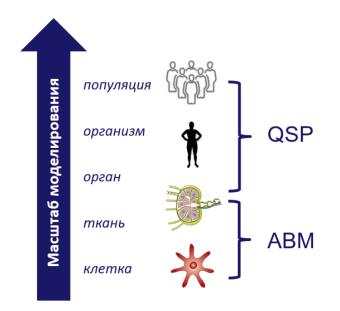


Моделирование эффекта anti CTLA-4 в рамках агент-ориентированного подхода

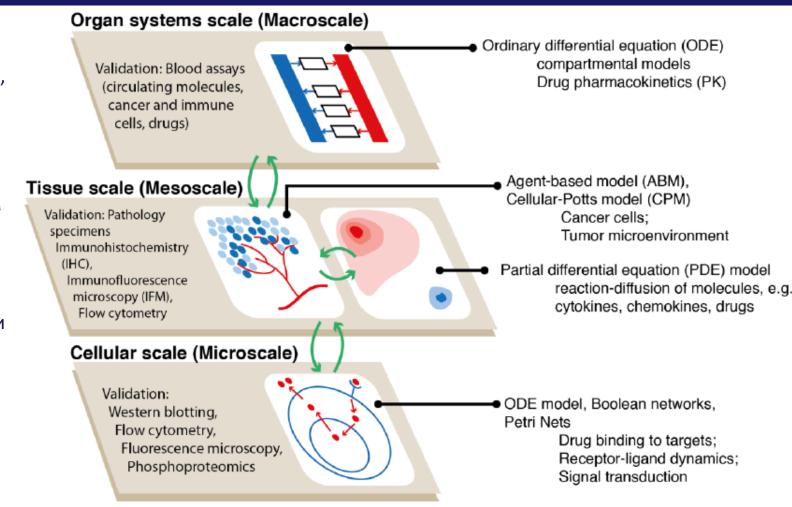
Иван Азаров, Юрий Косинский, Кирилл Песков, Гэбриел Хельмлингер

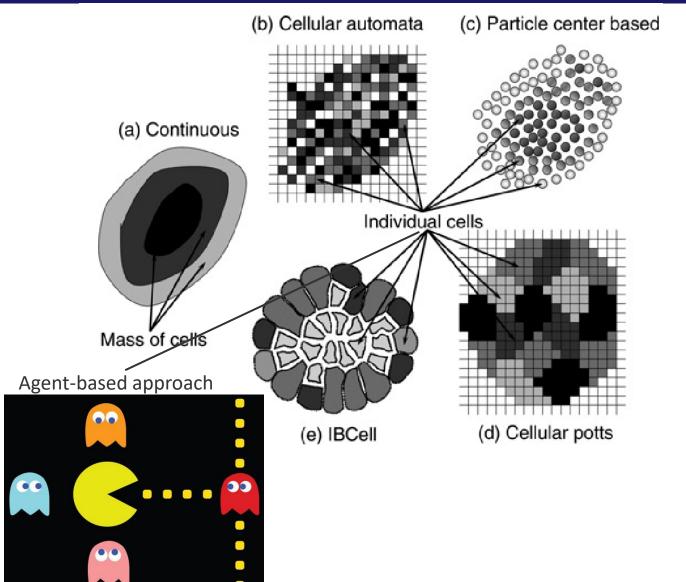


2-3 ноября 2021

XIII Конференция по математическим моделям и численным методам в биоматематике 2021

Проблемы, сложности и задачи


- Формирование иммунного ответа сложное мультимасштабное эмерджентное явление, описание которого также должно происходить на разных уровнях и с помощью разных методик.
- Микро- и макро-уровни описания иммунного отклика должны органично дополнять друг друга в рамках единой системы моделирования
- На макроуровне тканей и органов системы ОДУ должны описывают поведение иммунного отклика в группе животных с привлечением популяционного подхода.
- При этом для описания поведения отдельных Т клеток зачастую плохо подходит использование традиционного аппарата ОДУ.

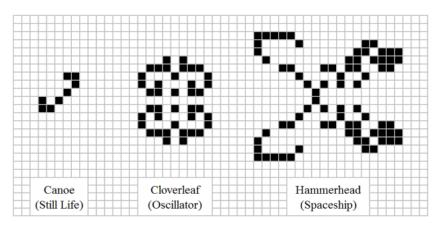

Разные уровни моделирования

- Данные биомедицинской визуализации предоставляют количественную информацию о биологических системах, однако механизмы, вызывающие пространственное формирование паттернов, и причинноследственные связи часто остаются непонятыми. Поэтому компьютерное моделирование становится всё более важным инструментом для восприятия и осмысления многоклеточных пространственно-временных процессов.
- Моделирование на уровне отдельных клеток и тканей позволяет оценить неизвестные параметры, устранить пробелы в теории, которые принципиально не проверяемы экспериментальным путём, и позволяет сравнить конкурирующие гипотезы, которые нуждаются в проверке.

Какие существуют методы для описания множества клеток?

	Continuous	Cellular automata	Particle-based	Cellular Potts	IBCell
Number of cells represented	Density - concentrations of cells	Large numbers	Large numbers	Moderate to large numbers	Moderate numbers
Cellular details included	Cell densities	Cells modeled as points	Cells modeled as deformable bodies		Cells modeled as deformable bodies
Cell-cell interactions	Averaged over the populations of cells	Fixed number of neighbors	Variable numbers of neighbors	Variable numbers of neighbors	Variable numbers of neighbors
Extracellular extensions	Direction fields for ECM fibers orientation **** BM modeled as a region of different density **** Chemical fields - cont. model	Concent (nutrients) modeled as co Density of the ECI fie	Concentrations of chemical fields – cont. **** Density of ECM – fluid parameter *** ECM fibers modeled as bundles of springs		
Intracellular extensions	Signaling pathways – cont. models	Signaling pathwa continuous equations hybrid n	on the cell scale -	ays modeled as ons on receptors le	
Experimental parameterization	Average measurements	Whole cell measurements	Whole cell measurements	Cell membrane based	Cell membrane receptor based
Underlying lattice	Off-lattice	On-lattice	Off-lattice	On-lattice	Off-lattice
Underlying mathematics	Partial differential equations (PDE)	Monte-Carlo simulations	Potential energy	Energy minimization	Fluid dynamics

Методы и инструменты моделирования

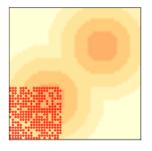

Агент-ориентированное моделирование

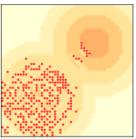
Свойства:

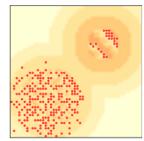
- Инструменты АОМ, реализуют подход Распределённого Искусственного Интеллекта
- Теоретически допускает распараллеливание расчётов
- Самоорганизующиеся и сложные адаптивные системы
- Описание "эмерджентных" явлений
- Независимые автономные объекты агенты требуют чётких правил поведения
- Значительная чувствительность к начальным условиям
- Соответствие принципам K.I.S.S. или Бритве Оккама
- Внедрение стохастичности на любом уровне
- Учёт пространственного распределения агентов
- Трудность оценки значений параметров
- Низкие предсказательные возможности

Примеры:

- Клеточные автоматы
- Модель бойдов Рейнольдса (1986)
- Модель Сахарного Пейзажа Эпштейна и Акстелла (1996)
- 6 Модель Иллачинского ведения боевых действий (1996)



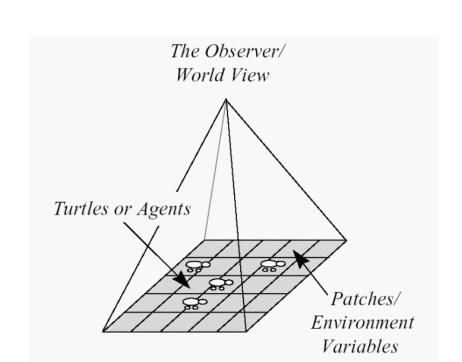



(a) Alignment

(b) Cohesion

(c) Separation

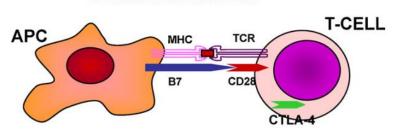
Баланс доступности языка и сложности моделей


ABM пакеты в осях: сложность моделирования – вычислительные возможности							
Зычислительная сила моделирования/ масштабируемость	Экстремальная			Repast HPC MATSIM Swarm			
	Высокая	Altreva NetLogo	AnyLogic SimEvents (Matlab)	Agent Cell Repast Symphony MASON			
	Средняя	JAS	Agent Factory Mathematica (Wolfram) SimBioSys	MASyV			
	Невысокая	StarLogo Scratch	SEAS				
		Легко	Умеренно	Тяжело			
Масг	Насколько тяжело создавать модели в среде						

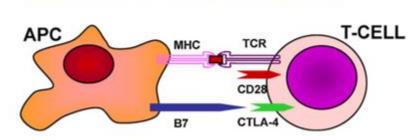
Выбор инструмента: мультиагентный язык NetLogo

- **NetLogo** (1999) агент-ориентированный императивный язык программирования и среда разработки.
- Возник на основе языка программирования Logo (1967).
- Среда разработки построена с использованием Java.
- Все процессы моделируются в NetLogo с помощью вспомогательных сущностей агентов. Агенты объекты, следующие заранее прописанным инструкциям (с разной степенью детерминизма).

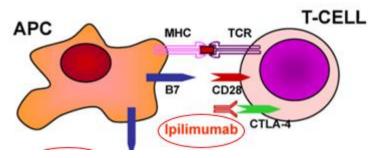
- 1. "Черепахи"
- 2. Патчи
- 3. Связи
- 4. Наблюдатель



Моделирование anti CTLA-4 терапии в рамках агенториентированного подхода

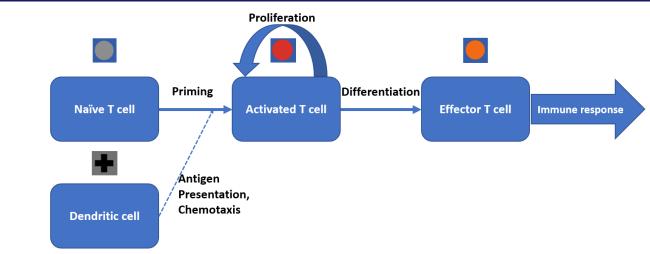


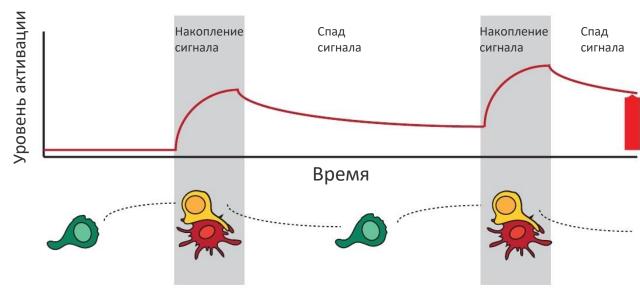
Перевод действия anti CTLA-4 на язык агентного моделирования


T-CELL ACTIVATION

INHIBITION OF T-CELL ACTIVATION

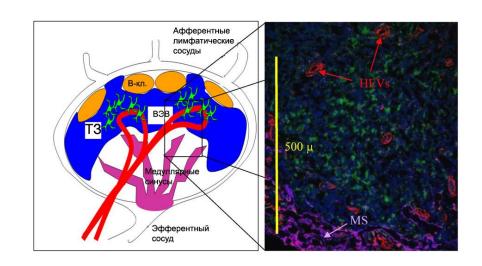
- CTLA-4 подавляет иммунный ответ путём косвенного уменьшения передачи сигналов через костимуляторный рецептор CD28.
- Ингибирование CTLA-4 приводит к усилению иммунного ответа в том числе и в отсутствии $\mathsf{T}_{\mathsf{reg}}$ за счёт привлечения костимуляционного пути.
- <u>Гипотеза</u>: в упрощённом виде эффект anti CTLA-4 возможно описать с помощью расширения репертуара клонов, которые будут активированы при взаимодействии с ДК, несущими конкретный антиген.

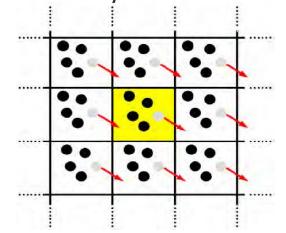



Диаграмма состояний клеток

• Аффинность нового лимфоцита генерируется случайным образом так, чтобы в итоге значения распределялись по экспоненциальному закону с единственным параметром, выступающим в роли обратной средней аффинности Т-клеток в ЛУ.

 $f_X(Aff) = egin{cases} 0, & Aff < 0 \ rac{1}{\overline{Aff}}e^{rac{Aff}{\overline{Aff}}}, & 0 < Aff \leq 1, \ 0, & Aff > 1 \end{cases}$


- Поиск первого контакта наивными лимфоцитами с антигеном происходит благодаря случайным блужданиям. Первичная активация длится **24** часа
- Активированная Т клетка ожидает деления (8 часов), в результате получается 2 активированных Т клетки.
- Для следующих делений Т клеткам необходима серия коротких контактов (≈20 мин) с ДК для достижения порогового уровня активации.
- Если в течение короткого контакта уровень активации превзойдёт пороговый S_n , то произойдёт переход к состоянию деления.



Т зона лимфоузла in silico

- **2D** решётка 100х100 патчей (5 мкм).
- 8 ДК и 2000 Т клеток случайные начальные координаты.
- За **Δt** (30c): 1 патч в случайном направлении.
- Движение запрещено, если впереди другая Т-клетка либо непроницаемая граница, либо ДК.
- Граничные условия: периодические, приложены к боковым границам.
- Медуллярные синусы: нижняя и верхние границы расчётной области.
- **Новые Т клетки** взамен ушедших появляются в случайном месте Т-зоны для поддержания плотности.
- Если текущее число клеток в ЛУ меньше предельного, то заместо ушедшей появляется новая неактивированная Т клетка, аффинность которой определяется случайным образом по общему закону.
- Радиус эффективного "хемокинового облака" (CCL3, CCL4) вокруг каждой ДК 5 патчей.
- Внутри хемокинового облака движение активированных клеток меняется со случайного на направленное к центру ДК (1 шаг из 3).
- После некоторого времени проведённого в области градиента Т клетки утрачивают свою восприимчивость к хемокину и начинают двигаться случайным образом.

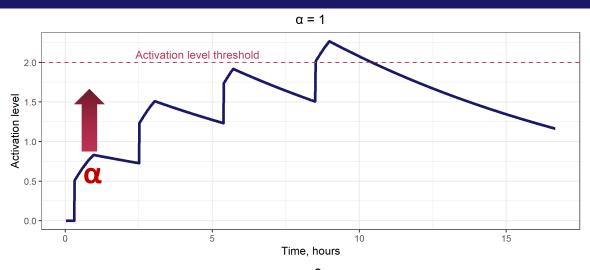
Периодические граничные условия:

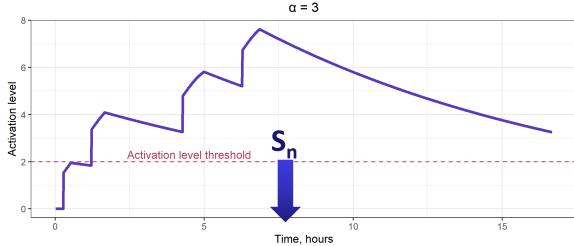
Эффект anti CTLA-4 в терминах сигнала активации

Накопление сигнала активации:

$$S(t) = S_0 + \frac{\alpha}{1 + e^{-\delta t}},$$

Убывание сигнала активации по экспоненциальному закону:

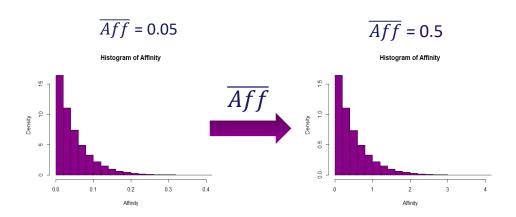

$$S(t) = S_0 \cdot e^{-\lambda t}$$

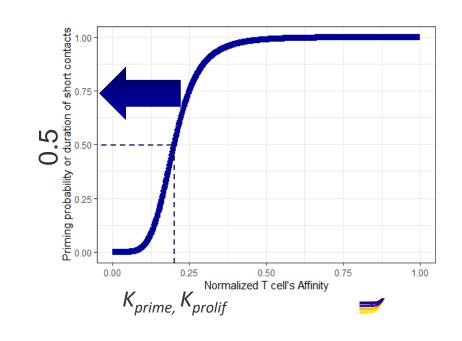

 $T_{1/2} = 8$ часов.

 S_n и α отвечают за один процесс \Longrightarrow не имеет смысла варьировать оба параметра, так как поведение системы определяется соотношением между связанными параметрами.

Уместно предположить, что S_n является нерегулируемой внутренней характеристикой иммунной системы.

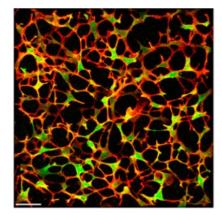
α вполне может возрастать благодаря стабилизации костимуляционного пути, поэтому для описания действия anti CTLA-4 был выбран второй механизм.

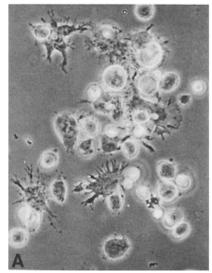

Влияние anti CTLA-4 на прайминг и пролиферацию


Вероятность первичной активации:

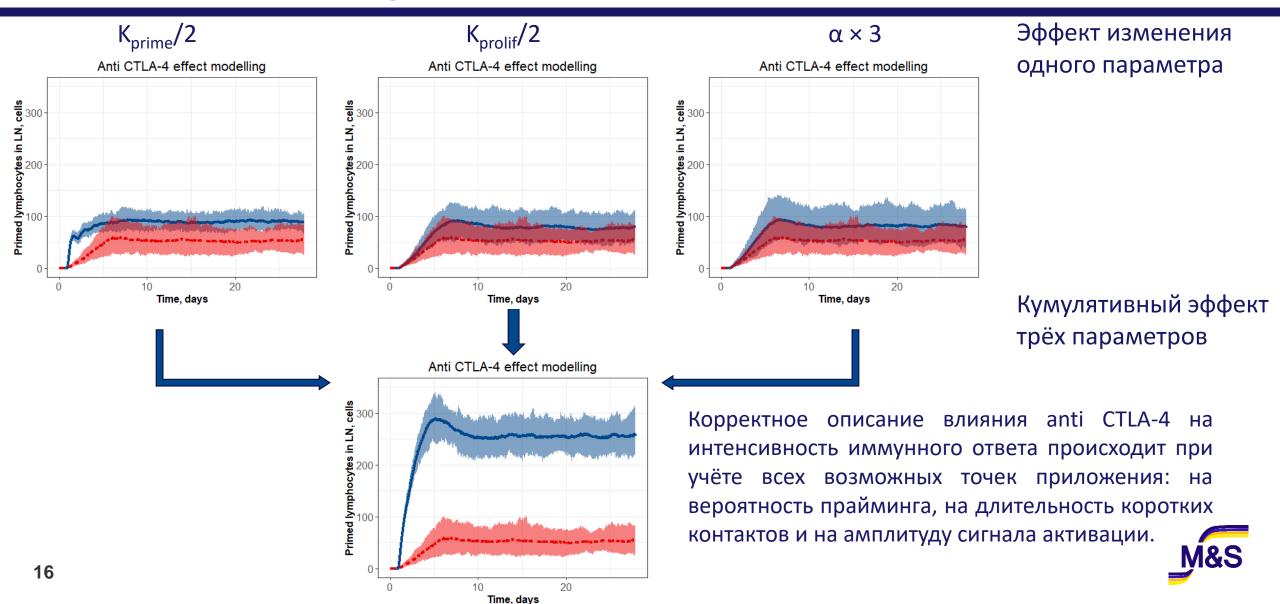
$$P_{prime} = \frac{Aff^n}{Aff^n + K_{prime}^n}$$

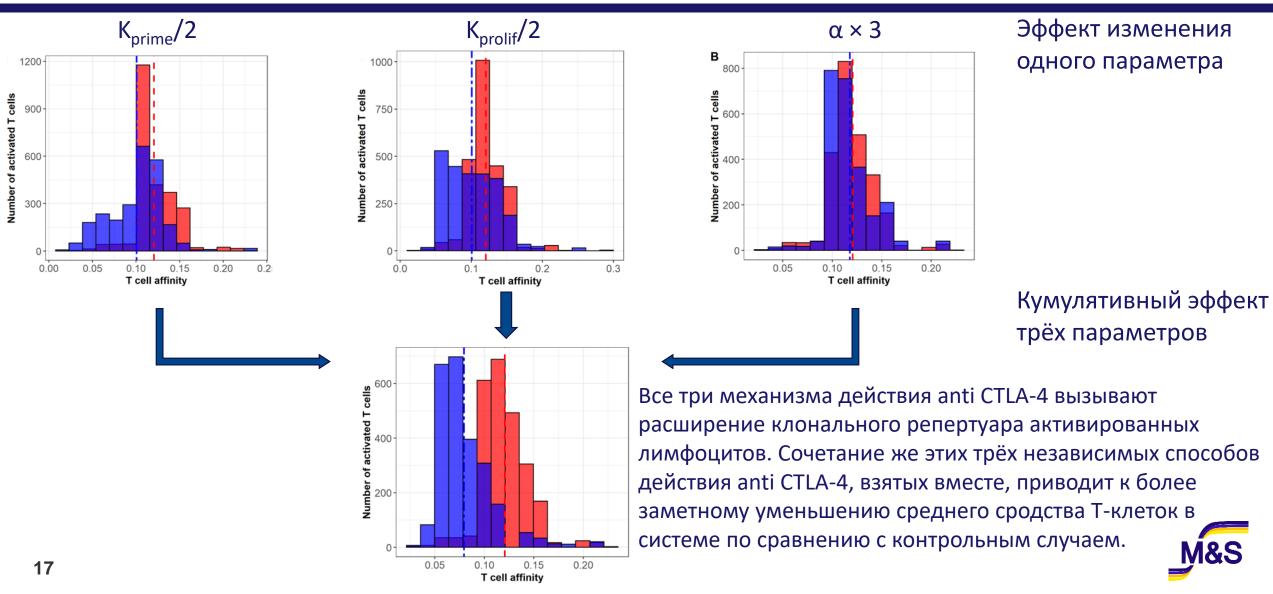
Продолжительность короткого контакта:
$$T_{contact} = \frac{T_{max} \cdot Aff^n}{Aff^n + K_{prolif}^n}$$


- Увеличение Aff Т клеток в системе самый простой способ увеличения числа активированных клонов в системе при любых комбинациях параметров.
- Но использовать значения $\overline{Aff}>0.1$ значит перевирать реальную биологическую картину, в которой родственных клонов меньшинство.
- Более разумным будет заранее определиться с частотой родственных клонов, а варьировать другие параметры: $\mathbf{K}_{\mathsf{prime}}$ и $\mathbf{K}_{\mathsf{time}}$, отвечающие за влияние средней аффинности на прайминг и установление коротких контактов. Это два независимых "фильтра" на пути к экспансии конкретного клона.



Ограничения действующей модели


- 2D модель Т-зоны ЛУ игнорирует реальные механизмы движения лимфоцитов по ретикулярной сети фибробластов
- Рассматривается обобщённый CD4+/CD8+ фенотип Т клеток без обратного влияния Т-хелперов на процесс активации
- Агентный подход и недеформируемые агенты не лучший выбор для описания плотно упакованных тканей и кластеров клеток: для описания роя Т-клеток вокруг ДК приходится идти на ряд численных ухищрений
- В модели не рассматривается процесс ФК anti CTLA-4, вместо этого лечение имплементировано в виде фоновых условий иммуноактивации
- Anti CTLA-4 задействует множество механизмов помимо расширения репертуара активируемых клонов, в том числе через иммуносупрессивный эффект T_{reg} , которые в модели отсутствуют
- Крайне редуцированный, упрощённый способ оценки неизвестных параметров модели



ABM иммунного ответа способна описывать эффект anti CTLA-4 на уровень активированных Т-клеток

Модельные предсказания расширения клонального репертуара

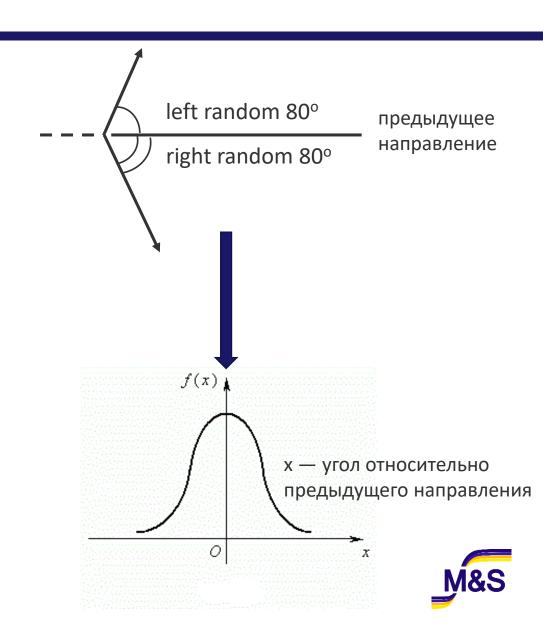
Заключение

- В рамках данной работы на базе ранее опубликованной агент-ориентированной модели формирования иммунного ответа была создана оригинальная модель действия ингибитора контрольной точки anti CTLA-4. Было выявлено и воспроизведено эмерджентное поведение Тклеточного иммунного ответа, возникающее в результате межклеточных взаимодействий, которое было бы очень трудно уловить с помощью ОДУ.
- Мульти-агентная модель эффекта anti CTLA-4 выявила возможные пути действия ингибитора.
- Ингибирование CTLA-4 осуществляет обмен между числом и средней аффинностью активированных Tклеток в ЛУ. Другими словами, блокада CTLA-4 трансформирует малое число высокородственных Тклеток в большее количество Т-клеток с более низкой специфичностью и более широким распределением.
- Текущая модель убедительно объясняет причины значительного количества иммуноопосредованных нежелательных явлений, которые могут вызывать проблемы с переносимостью и даже прекращение лечения, за счёт расширения диапазона аффинностей активированных лимфоцитов. Агентный подход предсказывает неизбежное увеличение количества Т-клеток, слабо родственных исследуемому антигену при лечении с помощью anti CTLA-4.

Спасибо за внимание!

Контактная информация:

<u>Ivan.Azarov@msdecisions.ru</u>, тел: +7 495 797 5535

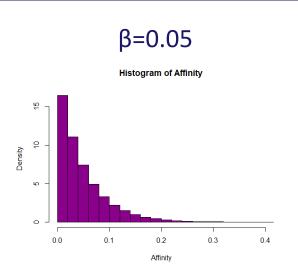

Моделирование движения Т клеток

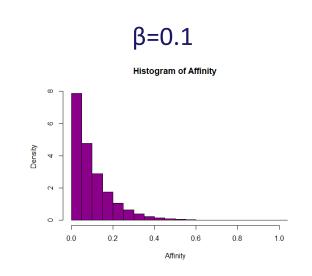
Скорость движения: **10** мкм/мин (2РМ данные – Miller 2004)

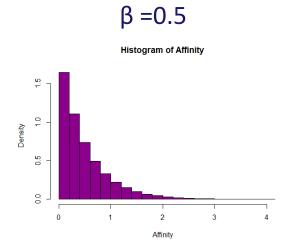
Коэффициент подвижности:

$$M = \frac{\langle \Delta r^2 \rangle}{4\tau}$$

При использовании 80° получается средний коэффициент подвижности: $66 \, \frac{\mu m^2}{s}$. $68 \, \frac{MKM^2}{MUH}$ наблюдался в Miller 2004.

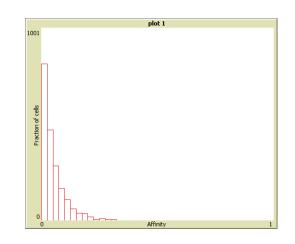

Случайная генерация чисел по экспоненциальному закону

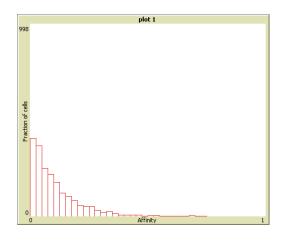

R, функция rexp

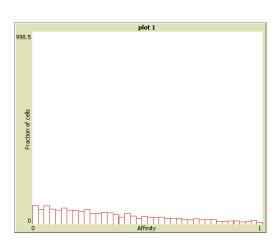

Плотность вероятности:

$$f_X(x) = \begin{cases} \frac{1}{\beta} \cdot e^{-\frac{x}{\beta}}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

 β – scale factor, среднее







NetLogo, random-exponential

Способ генерации: -mean × *In*(random-float 1.0)

Как генерирует случайные числа NetLogo?

Метод генерации экспоненциальных переменных основан на выборке с обратным преобразованием: для заданной случайной переменной U, взятой из равномерного распределения на единичном интервале (0, 1), переменная:

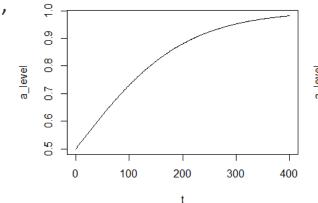
$$T(U) = F^{-1}(U)$$

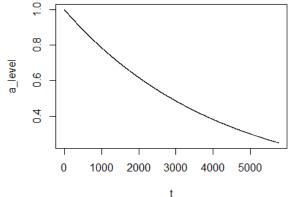
будет распределена по экспоненциальному закону, где ${\sf F}^{\text{-}1}$ имея в виду, что CDF для этого распределения $1-e^{-\lambda x}$

$$F^{-1}(U) = \frac{-\ln(1-p)}{\lambda}$$

Более того, U изменяется равномерно от 0 до 1, поэтому аргумент можно заменить:

$$T(U) = \frac{-\ln(U)}{\lambda}$$

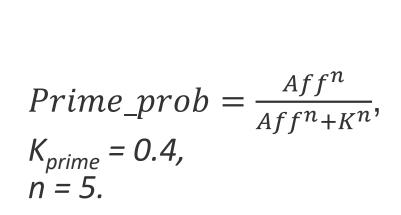

Эмпирические соображения о накоплении сигнала активации

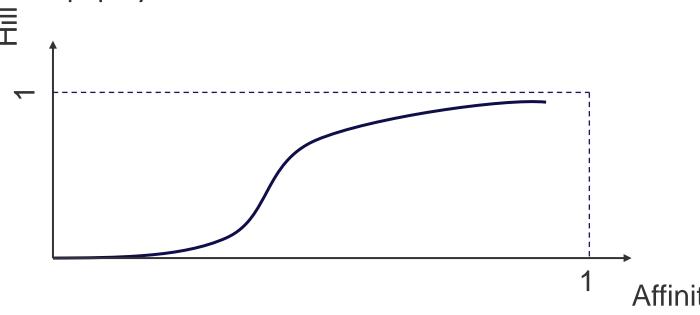

Накопление сигнала активации:

$$S(t) = S_0 + \frac{\alpha}{1 + e^{-\beta t}}$$
,

Убывание сигнала активации по экспоненциальному закону: $T_{1/2}=24$ часа.

$$S(t) = S_0 \cdot e^{-\lambda t}$$





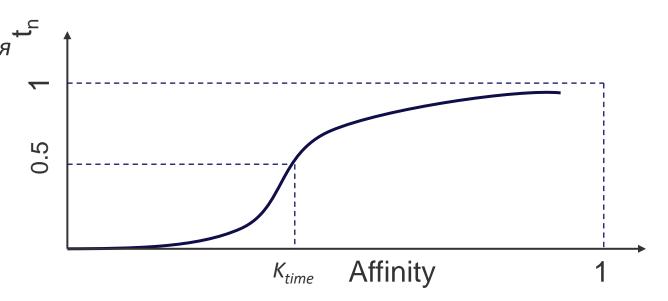
- α управляет уровнем насыщения сигнала активации
- β отвечает за время выхода сигнала активации в течении одного контакта на стационарные значения
- За время короткого контакта только малый процент клеток выходит на насыщения по сигналу активации => β ≈ 0.02
- За один короткий контакт невозможно преодолеть пороговое значение сигнала активации => $\alpha \approx 1$, порог активации > 1.

Вероятность прайминга – функция аффинности

Рассчитывается по формуле Хилла:

Реализация:

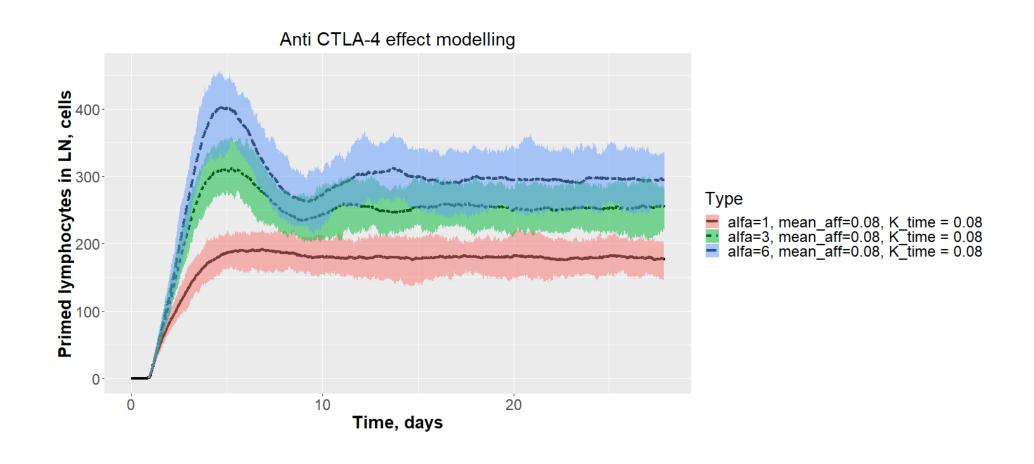
Если Prime_prob(Aff) > случайно сгенерированного числа от 0 до 1, то первичная активация происходит. Таким образом реализуется случайный характер процесса


Процесс прайминга занимает 24 часа для соответствия экспериментальным ₂₄данным.

Продолжительность коротких контактов

- Короткие контакты происходят между ДК и уже активированными Т-лимфоцитами
- В ходе коротких контактов происходит дополнительная активация для последующих делений
- Рассчитывается также по формуле Хилла

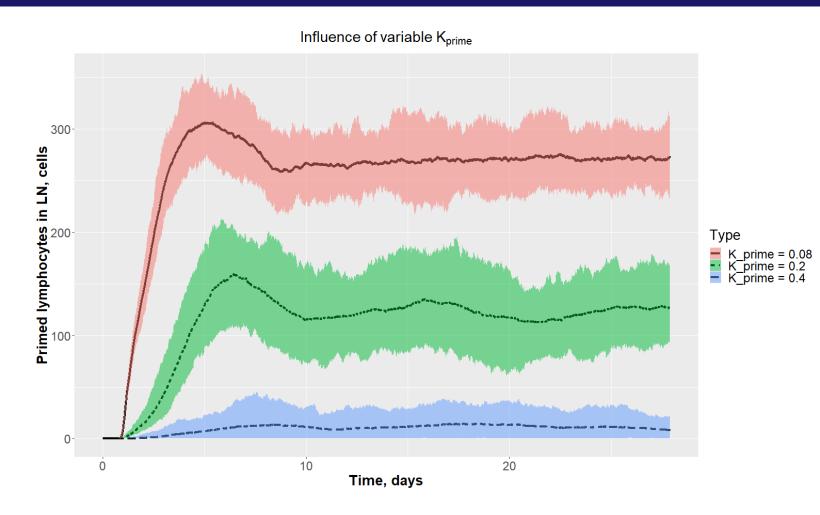
$$t_n=rac{Aff^n}{Aff^n+K^n}$$
, нормализованное время связывания $K_{time}=0.4$, $n=5$, $T_B{\sim}LogN(\mu,\sigma^2)$, где $\mu=20$ мин, $\sigma=10$ мин, $T_{contact}=T_B\cdot t_n$



Согласно предварительным расчётам:

Среднее время между короткими контактами для уже активированных Т клеток, продолжающих деление, при стандартной плотности клеток и плотности активированных клеток в 10 раз меньшей, составляет примерно **250** минут.

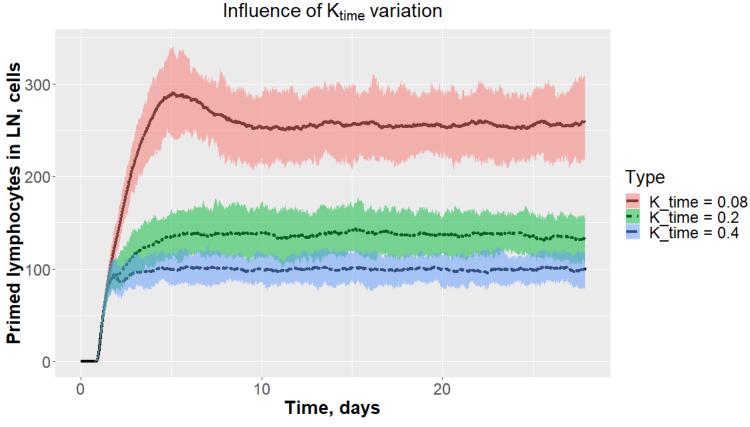
Накопление сигнала активации влияет на количество активированных лимфоцитов



Уменьшение K_{prime} повышает уровень лимфоцитов в ЛУ

 α = 3 β = 0.02 Thresh_level = 2 K_{time} = 0.02 mean_aff = 0.02 K_{prime} — варьируется

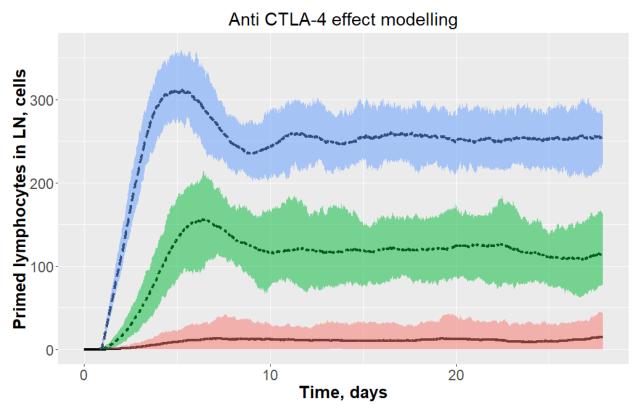
- В случае низкой средней аффинности, когда большинство Т клеток являются слабо родственными к презентируемому на ДК антигену вывести систему на приемлемый уровень иммунного ответа может только снятие строгих условий на первичную активацию лимфоцитов.
- К_{prime} сопоставимо со средней аффинностью значит, что прайминг проходить будут практически все клетки, даже с низкой аффинностью.



Снижение К_{time} означает снижение порога по аффинности для дальнейшей активации Т клеток

 α = 3 β = 0.02 Thresh_level = 2 K_{prime} = 0.08 mean_aff = 0.02 K_{time} — варьируется

- Высокие значения К_{time}, то есть своеобразного ЕС₅₀ для времени коротких контактов, на фоне низкой средней аффинности Т клеток приводят достаточно слабому иммунному ответу.
- Уменьшение К_{time} и следовательно достаточно продолжительные контакты дополнительной активации для клонов с невысокой аффинностью приводят к увеличению стационарного уровня Т клеток в системе.



• Система перестаёт отзываться на уменьшение К_{time}, когда этот параметр сравнивается с К_{prime} – предыдущим бутылочным горлышком в системе, отвечающим за первичную активацию Т клеток.

• Низкие К_{time} и высокие α позволяют поддерживать дальнейшую пролиферацию даже слабо родственным клонам, хотя продолжительность их контактов с ДК довольно невелика.

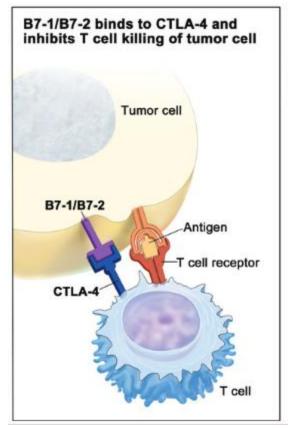
Влияние средней аффинности на уровень Т клеток

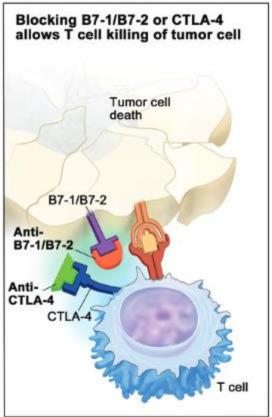
- Увеличение средней аффинности Т клеток в системе наиболее безусловный способ увеличения уровня активированных клонов в системе, который действует практически при любой комбинации параметров.
- Однако, брать значения mean_aff > 0.1 значит перевирать реальную биологическую картину, в которой родственных клонов меньшинство.

```
Type

alfa=3, mean_aff=0.02, K_time = 0.08
alfa=3, mean_aff=0.04, K_time = 0.08
alfa=3, mean_aff=0.08, K_time = 0.08
```

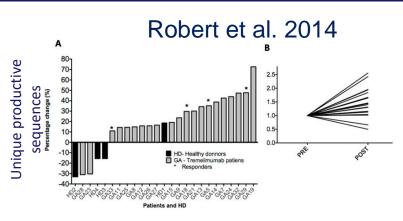
• Помимо этого, более разумным будет заранее определиться с частотой родственных клонов, а варьировать другие параметры.



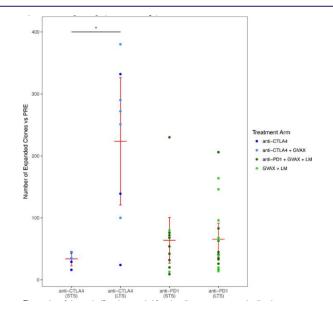

Механизмы действия CTLA-4

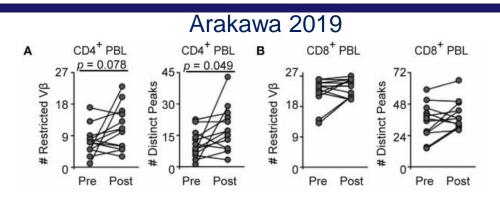
- Считается, что из-за своего гораздо более высокого сродства к связыванию В7 (в 20 раз), СТLА-4 ингибирует опосредованный СD28 костимулирующий сигнал, что приводит к снижению активации Т-клеток.
- Используя тесты миграции in vitro и двухфотонную лазерную сканирующую микроскопию in vivo, Schneider et al. показали, что CTLA-4 увеличивает подвижность Т-клеток, препятствуя образованию иммунных синапсов между Т-клетками и APC, что приводит к снижению продукции цитокинов и пролиферации Т-клеток.
- Сообщалось, что CTLA-4 ингибирует активацию факторов транскрипции, таких как NF-кB, NF-AT и AP-1 [46], а также мобилизацию Ca2 + и фосфорилирование PLC-γ1 в активированных T-клетках in vitro.
- Исследования с использованием Т-клеток, полученных от мышей с дефицитом СТLA-4, продемонстрировали, что СТLA-4 также регулирует экспрессию, межклеточного адаптивного белка, который имеет решающее значение в установлении порога активации Т-клеток в случае В-клеточной лимфомы.
- В случае дифференцировки наивных Т-клеток мышей в Т-хелперные 1 (Th1) и Th2-клетки вовлечение CTLA-4 ингибирует IL-4 сигнальный преобразователь и активатор пути транскрипции-6 (STAT6), что приводит к регуляции и жесткому контролю дифференцировки Th2-клеток.
- Другой механизм, лежащий в основе CTLA-4-опосредованного подавления Т-клеток, может включать его способность влиять на развитие клеточного цикла. Увеличение экспрессии CTLA-4 в CD4+ клетках приводит к остановке клеточного цикла при фаза G1 S.
- Помимо прямого воздействия на активацию Т-клеток, CTLA-4 также регулирует Т-клетки, ослабляя активацию APC. Включение CTLA-4 усиливает экспрессию индоламин-2,3-диоксигеназы (IDO), супрессора функции дендритных клеток (DC). Индукция триптофан-деградирующего фермента IDO в определенных субпопуляциях селезенки DC полностью блокировала клональную экспансию Т-клеток [55]. Было высказано предположение, что модуляция катаболизма триптофана посредством IDO является средством, с помощью которого CTLA-4 функционирует in vivo [56].
- Дополнительные данные также предполагают, что CTLA-4 управляет собственными функциями FoxP3 + регуляторных T-клеток (Tregs), которые имеют решающее значение для поддержания периферической толерантности и предотвращения аутоиммунитета.
- Куреши и др. недавно выявили новый механизм действия СТLA-4 в негативной регуляции иммунных ответов Т-клеток. СТLA-4 захватывает и усваивает молекулы В7 на поверхности АРС посредством трансэндоцитоза, что приводит к деградации и истощению костимулирующих молекул.

 31
- Экспрессия СТLА-4 на клетках опухоли?


Механизмы действия CTLA-4

Расширение клонального разнообразия из литературы

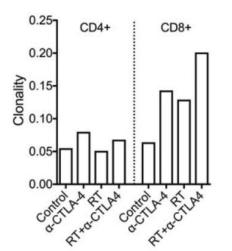



Figure 1. Change in absolute number of unique productive sequences

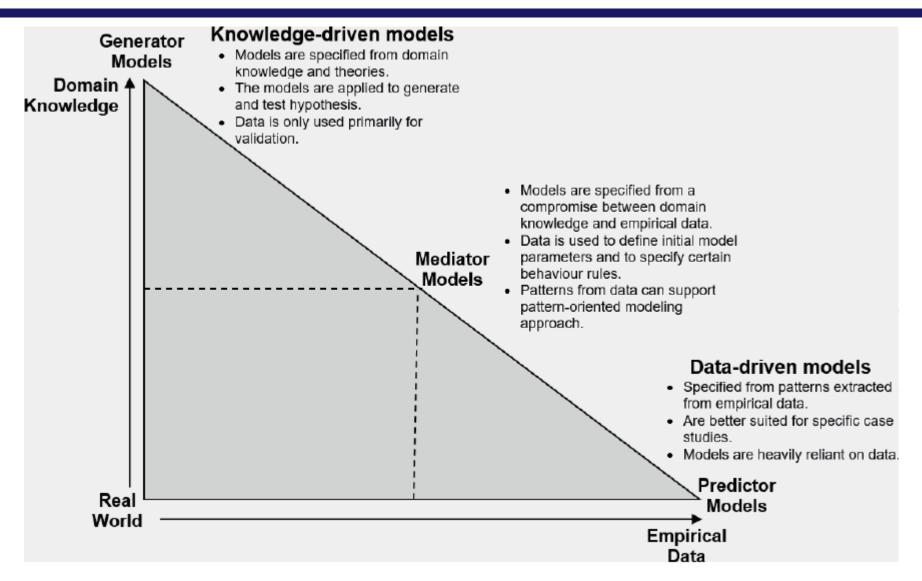
A.) Changes reported between baseline and post-tremelimumab samples from 21 patients with melanoma (GA, in black) and from four healthy donors (HD, in grey). B) Normalized TCR V-beta CDR3 repertoire diversity. Analysis comparing baseline and post-tremelimumab PBMC samples. The values were normalized to 1, to show increase and decrease after treatment in a comparable manner.

Hopkins 2018

Number of expanded clones in patients separated by study and response.



Following CTLA4 blockade, numbers of restricted TCR V β -gene families and distinct peaks tended to increase in CD4+ blood T cells as compared to pretreatment values (p = 0.078, p = 0.049, respectively), but not in CD8+ blood T cells (Figures 3A,B, p = 0.11, p = 0.17, respectively). These findings indicated that CTLA4 blockade particularly broadened antigendriven CD4+ T-cell responses.


Rudqvist 2017

CD8+ T cells clonally expand in 4T1 tumors after radiation and anti-CTLA-4

Типы агентных моделей по использованию данных

Возможности распараллеливания разных методов

Клеточные автоматы

Elapsed time and speed up of a 256×256 FHP lattice gas (100 steps)

	Processors				
	1	2	4	8	10
Cells per processor	65536	32768	16384	8192	6553
Time (s)	88.03	47.64	23.79	11.01	8.83
Speedup	1	1.84	3.70	7.99	9.98

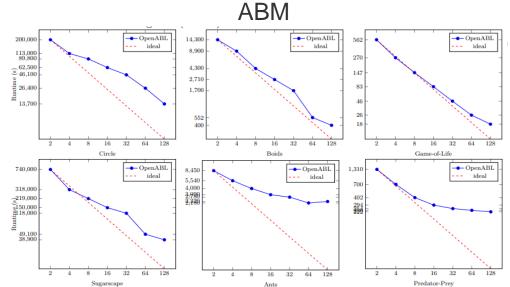
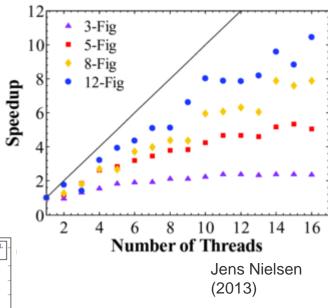



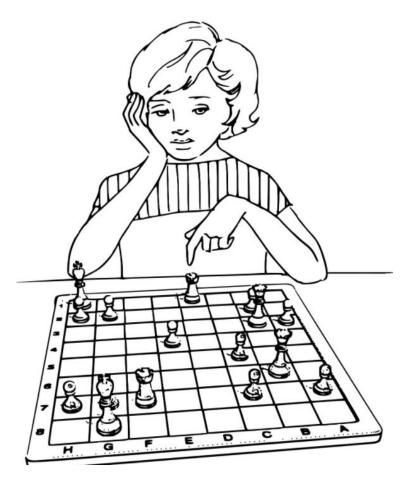
Fig. 4. OpenABL D-Mason strong scaling with different number of cores (x-axis).

Cosenza, B., Popov, N (2018)

Кинетический Монте Карло

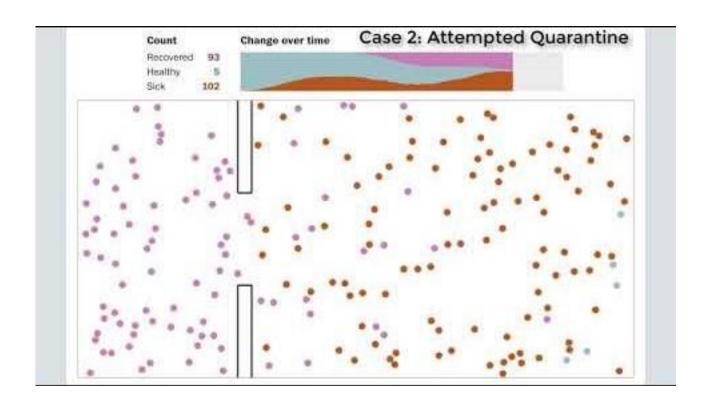
M&S

Анализ нежелательных явлений для подгрупп по органам

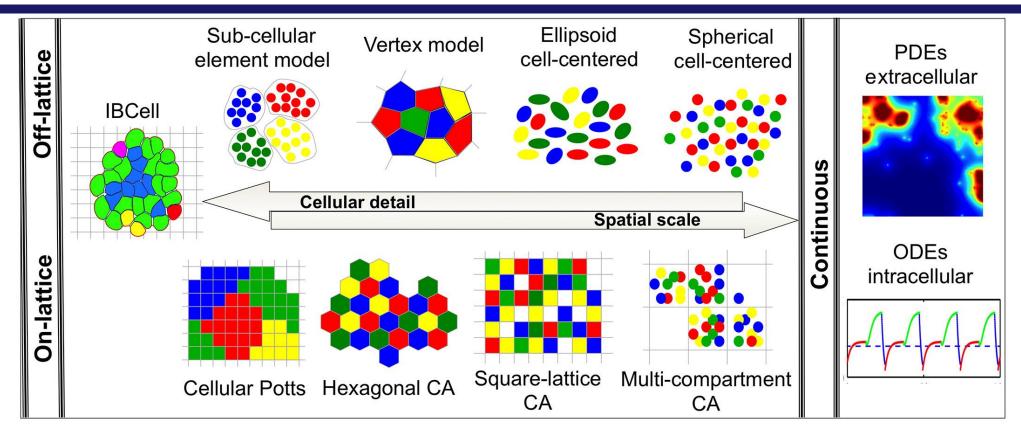

Ингибит	гор	Все НЯ	НЯ степеней 3-4	жкт	Печёночные	Кожа	Эндокринная система	Лёгочные
PD-1	НЯ %	72.5	18	2.4	0.97	1.2	0.4	1.0
	Дов.инт.	68-77	15-22	0.9-8.8	1.4-8.0	0.8-6.2	0.2-19	0.4-8
CTLA-4	НЯ %	86	30	11.3	4.1	2.2	3.5	0.57
	Дов.инт.	75-92	18-42	7.2-16	0.4-9.1	0.5-4.5	1.6-7.0	0.02-2.0

(c) M&S Decisions

Для мототерапии ингибитора CTLA-4 в среднем наблюдается больше побочных эффектов, чем для PD-1!



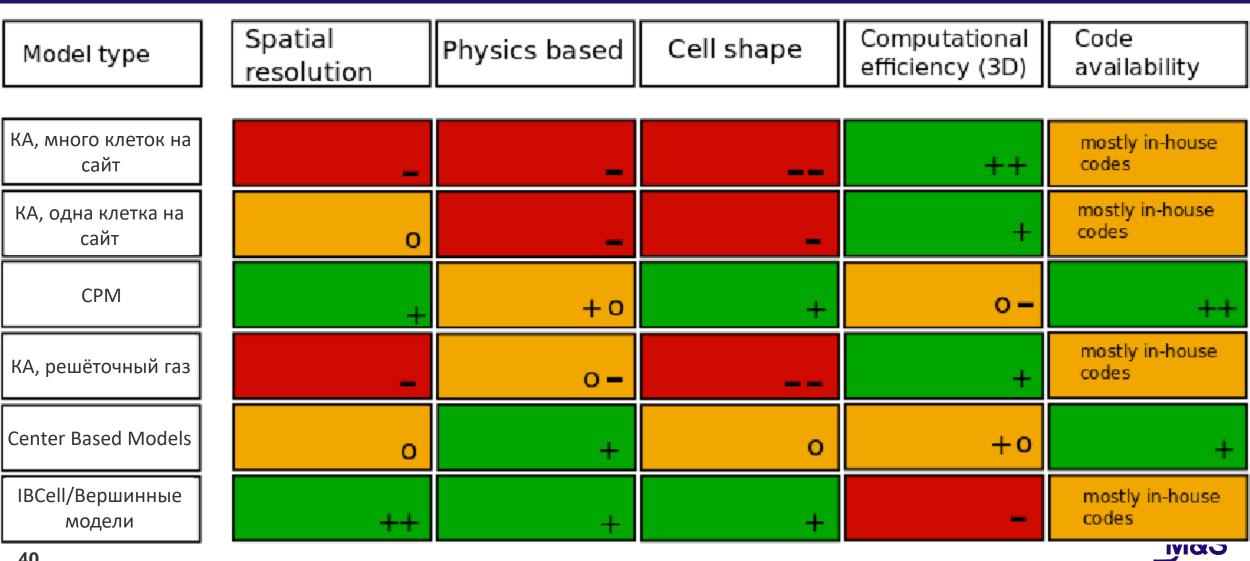
Микроскопические подходы и шахматы


- **Клеточные автоматы**: пустая доска без фигур
- **Метод Монте-Карло**: баллистические траектории, упругие столкновения / фигуры съедают друг друга с некоторой вероятностью
- **Молекулярная динамика**: потенциалы взаимодействия фигур, партии длятся несколько дней
- **Клеточные модели Поттса**: партия сводится к агрегации фигур, фигуры могут отъедать друг от друга кусочки, фигуры занимают по нескольку клеток, увеличения частоты ходов с температурой, движение фигур по градиенту(?)
- **Агент-ориентированное моделирование**: клетки patches, фигуры turtles, типы фигур breed агента, белые или чёрные переменная цвета, игрок observer (?)

Актуальный пример агентного моделирования

Конкурирующие подходы

IBCell – Immersed Boundary model of a Cell.


Vertex models — отслеживают клеточную мембрану как набор многоугольников и обновляют положение каждой вершины в соответствии с напряжениями в клеточной мембране, возникающими в результате сил адгезии между клетками и эластичности клеток.

Multi-compartment CA – Cellular automaton with many cells per lattice site.

Spherical cell-centered – аналог кинетического М.-К. для описания клеток.

Сравнение методов лицом к лицу

