Validation of Finite-Volume Methods for Clot Formation Modelling

<u>Kirill Terekhov</u>¹, Anass Bouchnita², Vitaly Volpert³, Yuri Vassilevski^{1,4,5}

¹Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences
 ²Ecole Centrale Casablanca
 ³Institut Camille-Jordan, University of Lyon 1
 ⁴Sechenov University
 ⁵Moscow Institute of Physics and Technology

BIOMATH, 2 November 2020

Problem

actuality and complexity

Problem:

 Construction of three-dimensional model of blood flow and coagulation, clot formation after damage of blood vessel

Healthy arteria

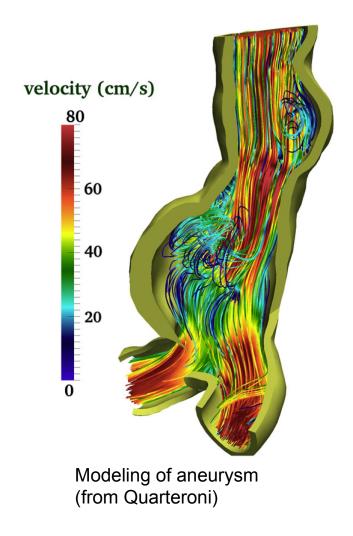
Atherosclerotic plaque

Clot in an artery

Clot formulation (illustration from internet)

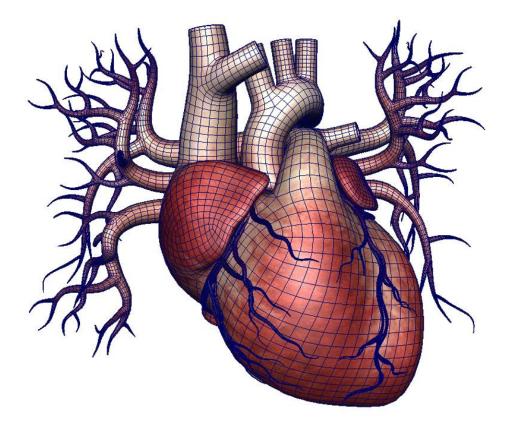
What for?

 Three-dimensional model is needed for decision making in case of complex patient-oriented geometry of blood vessel or arteria.



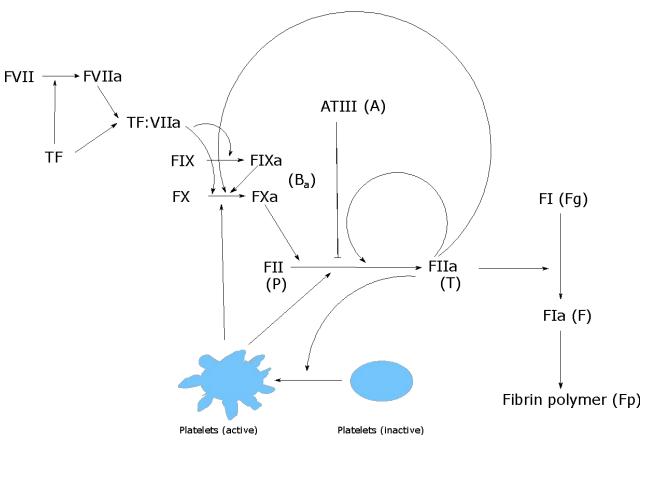
What for?

- Diseases of the heart and blood vessels is the primary cause o death
 - thromboembolic complications
- Three-dimensional model allows to assess the risk of
 - vessel occlusion
 - myocardial infarction



Heart model

- Model coupling:
 - Hemodynamics model with account for fibrin-polymer permeability
 - Model of **biochemical reactions** for blood plasma coagulation
 - Model of platelets
- Reaction cascade and model for platelets are stiff: very small time step
- Fully implicit model



Каскад реакций

- Blood is considered as an incompressible Newton's fluid: no account for complex nonlinear rheology of blood
- Blood vessels/arteria are **rigid**: no account for **wall motion**
- Fibrin-polymer is **immoble**: no account for clot **detachment**

System of Equations

- Conservation of momentum:
- Incompressibility:
- Prothrombin:
- Thrombin:
- Clot formation factors FIXa, Fxa:
- Antithrombin:
- Fibrinogen:

2 November 2020

$$\frac{\partial \rho \boldsymbol{u}}{\partial t} + \operatorname{div}(\rho \boldsymbol{u} \boldsymbol{u}^{T} - \mu \nabla \boldsymbol{u} + pI) = \frac{1}{k(F_{p}, \phi_{c})} \boldsymbol{u}$$
$$\operatorname{div}(\boldsymbol{u}) = 0$$
$$\frac{\partial P}{\partial t} + \operatorname{div}(P\boldsymbol{u} - D\nabla P) = -(k_{1}\phi_{c} + k_{2}B_{a} + k_{3}T + k_{4}T^{2} + k_{5}T^{3})P$$
$$\frac{\partial T}{\partial t} + \operatorname{div}(T\boldsymbol{u} - D\nabla T) = (k_{1}\phi_{c} + k_{2}B_{a} + k_{3}T + k_{4}T^{2} + k_{5}T^{3})P - k_{6}AT$$
$$\frac{\partial B_{a}}{\partial t} + \operatorname{div}(B_{a}\boldsymbol{u} - D\nabla B_{a}) = (k_{7}\phi_{c} + k_{8}T)(B^{0} - B_{a}) - k_{9}AB_{a}$$
$$\frac{\partial A}{\partial t} + \operatorname{div}(A\boldsymbol{u} - D\nabla A) = -k_{6}A - k_{9}AB_{a}$$

BIOMATH

 $\frac{\partial F_g}{\partial t} + \operatorname{div}(F_g \boldsymbol{u} - D\nabla F_g) = -\frac{k_{10}TF_g}{K_{10} + F_g}$

8

System of Equations

Fibrin: .

$$\frac{\partial F}{\partial t} + \operatorname{div}(F\boldsymbol{u} - D\nabla F) = \frac{k_{10}TF_g}{K_{10} + F_g} - k_{11}F$$

Fibrin-polymer: ullet

$$\frac{1}{\partial t}$$

$$\frac{\partial F_p}{\partial t} = k_{11}F$$

Inactivated ۰ platelets:

$$\frac{\partial \phi_c}{\partial t} + \operatorname{div}\left(\operatorname{tanh}\left(\pi \left(1 - \frac{\phi_c + \phi_f}{\phi_{max}} \right) \right) \left(\phi_c \boldsymbol{u} - D_p \nabla \phi_c \right) \right) = -(k_{12}T - k_{13}\phi_c)\phi_f$$
$$\frac{\partial \phi_f}{\partial t} + \operatorname{div}\left(\operatorname{tanh}\left(\pi \left(1 - \frac{\phi_c + \phi_f}{\phi_{max}} \right) \right) \left(\phi_f \boldsymbol{u} - D_p \nabla \phi_f \right) \right) = (k_{12}T - k_{13}\phi_c)\phi_f$$

Activated platele ٠

ets:
$$\frac{\partial \phi_f}{\partial t} + \operatorname{div}\left(\operatorname{tanh}\left(\pi \left(1 - \frac{\phi_c + \phi_f}{\phi_{\max}} \right) \right) (\phi_f \boldsymbol{u} - D_p \nabla \phi_f) \right) = (k_{12}T + k_{12}T)$$

 $\frac{1}{k(F_{p_{r}}\phi_{c})} = \frac{16}{a^{2}}\tilde{F}_{p}^{\frac{3}{2}}(1+56\tilde{F}_{p})\frac{\phi_{\max}+\phi_{c}}{\phi_{\max}-\phi_{c}} \quad \text{with} \quad \tilde{F}_{p} = \min\left(\frac{7}{10},\frac{F_{p}}{7000}\right)$ Media permeability: ۲

Bouchnita, A., Terekhov, K., Nony, P., Vassilevski, Y., & Volpert, V.: A mathematical model to quantify the effects of platelet count, shear rate, and injury size on the initiation of blood coagulation under venous flow conditions. PloS one, 15(7), e0235392, 2020

2 November 2020

Boundary Conditions

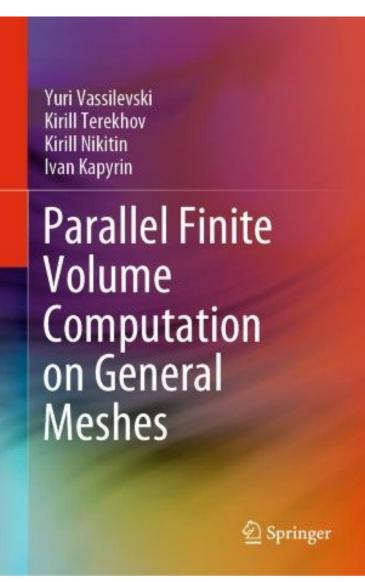
• BC on blood vessel damage:

$$\frac{\partial B_a}{\partial \boldsymbol{n}} = \frac{\alpha (B^0 - B_a)}{1 + \beta (B^0 - B_a)}$$

- BC for Navier-Stokes:
 - no-slip condition on walls
 - pressure drop between inflow and outflow
- BC of Dirichlet/Neumann type for blood components
- Model parameters:
 - from literature,
 - from 0D thrombin generation model,
 - tuned.

Numerical Methods

for model construction

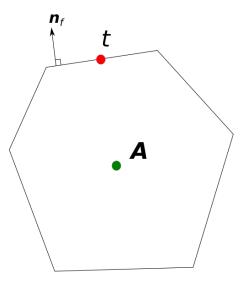


- Vassilevski, Y., Terekhov, K., Nikitin, K., & Kapyrin, I. (2020). Parallel Finite Volume Computation on General Meshes. Springer Nature.
- Terekhov, K. (2020). Collocated Finite-Volume Method for the Incompressible Navier-Stokes Problem. Journal of Numerical Mathematics

Finite-Volume Method

• Ostrogradsky-Gauss theorem:

$$-\operatorname{div}(\boldsymbol{A}) = \boldsymbol{g} \implies -\oint_{\partial V} \boldsymbol{A} d\boldsymbol{S} = \int_{V} \boldsymbol{g} d\boldsymbol{V}$$
$$\implies -\sum_{f \in \mathcal{F}(\boldsymbol{V})} |f| \boldsymbol{A} \boldsymbol{n}|_{\mathbf{x}_{f}} = |V| \boldsymbol{g}|_{\mathbf{x}_{V}}$$



• Requires the **flux approximation**:

$$t=\left.An
ight|_{\mathbf{x}_{z}}$$

• Full flux expression:

$$t = \left\{ egin{array}{c}
ho oldsymbol{u} oldsymbol{u}^T oldsymbol{n} - \mu
abla oldsymbol{u} oldsymbol{n} + poldsymbol{n} \ oldsymbol{n}^T oldsymbol{u} \end{array}
ight|_{\mathbf{x}_f}$$

• **Second-order** Taylor Series approximation:

$$\rho \boldsymbol{u} \boldsymbol{u}^{T} \boldsymbol{n} \big|_{\mathbf{x}_{f}} \approx \rho \boldsymbol{u} \boldsymbol{u}^{T} \boldsymbol{n} \big|_{\mathbf{x}_{1}} + \rho \left. \frac{\partial \boldsymbol{u} \boldsymbol{u}^{T} \boldsymbol{n}}{\partial \boldsymbol{u}} \right|_{\mathbf{x}_{1}} \nabla \boldsymbol{u} \left(\mathbf{x}_{f} - \mathbf{x}_{1} \right)$$

• **Upstream** approximation:

3x3 matrix $Q(u_1)$, eigenvalues $n^T u_1, 2n^T u_1, 0$

$$\rho \boldsymbol{u} \boldsymbol{u}^{T} \boldsymbol{n} \Big|_{\mathbf{x}_{f}} \approx \frac{\rho}{2} \left(\boldsymbol{u}_{1} \boldsymbol{n}^{T} + \boldsymbol{n}^{T} \boldsymbol{u}_{1} \mathbb{I} \right)$$

$$\times \begin{cases} 3\boldsymbol{u}_{1} - 2\boldsymbol{u}_{f} + 4\nabla \boldsymbol{u} (\mathbf{x}_{f} - \mathbf{x}_{1}), & \boldsymbol{n}^{T} \boldsymbol{u}_{1} > 0, \\ 2\boldsymbol{u}_{f} - \boldsymbol{u}_{1}, & \boldsymbol{n}^{T} \boldsymbol{u}_{1} < 0. \end{cases}$$

• Full flux expression:

$$t = \left\{ egin{array}{c}
ho u u^T n - \mu
abla u n^T \mu + p n \ n^T u \end{array}
ight|_{\mathbf{x}_f}$$

• Second-order splitting:

Distance to interface

$$- \left. \mu \nabla \boldsymbol{u} \boldsymbol{n} \right|_{\mathbf{x}_{f}} \approx \mu \left(\boldsymbol{u}_{1} - \boldsymbol{u}_{f} \right) / r_{1} - \mu \nabla \boldsymbol{u} \left(\boldsymbol{n} - (\mathbf{x}_{f} - \mathbf{x}_{1}) / r_{1} \right)$$
Two-point part Transversal correction

- Two-point yields positive matrix coefficients.
- Transversal correction is zero on orthogonal grids.

• Full flux expression:

$$t = \begin{cases} \rho u u^{T} n - \mu \nabla u n + p n \\ n^{T} u \end{cases} \Big|_{\mathbf{x}_{f}}$$

• Stable approximation: Positive and negative eigenvalues

$$\begin{cases} pn \\ n^{T} u \end{cases} = \begin{bmatrix} n \\ n^{T} \end{bmatrix} \begin{bmatrix} u \\ p \end{bmatrix} \xrightarrow{\text{Positive eigenvalues}} \\ \approx \begin{bmatrix} \xi n n^{T} & n \\ 0^{T} \end{bmatrix} \begin{bmatrix} u_{1} \\ p_{1} \end{bmatrix} + \begin{bmatrix} -\xi n n^{T} & 0 \\ n^{T} \end{bmatrix} \begin{bmatrix} u_{f} \\ p_{f} \end{bmatrix} \\ + \begin{bmatrix} \xi n n^{T} & 0 \\ 0^{T} \end{bmatrix} \begin{bmatrix} \nabla u (\mathbf{x}_{f} - \mathbf{x}_{1}) \\ \xrightarrow{\text{Compensation term}} \end{cases}$$

• Full flux expression:

$$egin{aligned} egin{aligned} egin{aligned} eta &= \left\{ egin{aligned}
ho egin{aligned} eta egin{aligned}
ho eta egin{aligned} eta & -\mu
abla egin{aligned} eta & -\mu
abla & -\mu
abl$$

• Combination of approximations:

$$\begin{split} \mathbf{t} &\approx \left(\frac{3}{2}Q(\mathbf{u_1})^+ - \frac{1}{2}Q(\mathbf{u_1})^- + \frac{\mu}{r_1}\mathbb{I} + \xi \mathbf{n}\mathbf{n}^T\right)\mathbf{u_1} \\ &- \left(Q(\mathbf{u_1})^+ - Q(\mathbf{u_1})^- + \frac{\mu}{r_1}\mathbb{I} + \xi \mathbf{n}\mathbf{n}^T\right)\mathbf{u_f} \\ &- \nabla \mathbf{u}\left(\mu \mathbf{n} - \left(\frac{\mu}{r_1}\mathbb{I} + \xi \mathbf{n}\mathbf{n}^T + 2Q(\mathbf{u_1})^+\right)(\mathbf{x}_f - \mathbf{x}_1) + p_1\mathbf{n}\right) \end{split}$$

- Interface unknown elimination is based on the flux continuity.
- Computation of gradients is based on Green's formula

FVM for Blood Components

- Flux expression: $\mathbf{n}^T (C\mathbf{u} D\nabla C)$
- Advection: **first-order** upstream:

$$C\boldsymbol{n}^{T}\boldsymbol{u} \approx \frac{1}{2} \left(C_{1}(\boldsymbol{n}^{T}\boldsymbol{u} + |\boldsymbol{n}^{T}\boldsymbol{u}|) + C_{2}(\boldsymbol{n}^{T}\boldsymbol{u} - |\boldsymbol{n}^{T}\boldsymbol{u}|) \right)$$

• Diffusion: **sécond-order** nonlinear two-point approximation:

•
$$D\boldsymbol{n}^T \nabla C \approx D \frac{(C_1 - C_2)}{|\boldsymbol{x}_1 - \boldsymbol{x}_2|} - D(\mu_1 \nabla C_1 + \mu_2 \nabla C_2) \cdot \left(\boldsymbol{n} - \frac{(\boldsymbol{x}_1 - \boldsymbol{x}_2)}{|\boldsymbol{x}_1 - \boldsymbol{x}_2|}\right) = D(\boldsymbol{T}_1 C_1 - \boldsymbol{T}_2 C_2)$$

• Solution is **nonnegative** – very important for reactions!

FVM for Traffic Flow

- Flux expression: $\lambda(C)n^T u$
 - advection: $\lambda(C) = C$
 - traffic: $\lambda(C) = C(1-C)$
 - our case: $\lambda(C) = C \tanh(1-C)$
- First-order upstream approximation:

$\lambda'(C_1)\boldsymbol{n}^T\boldsymbol{u}$	$\lambda'(C_1)\boldsymbol{n}^T\boldsymbol{u}$	t	
+	+	$\lambda(C_1) \boldsymbol{n}^T \boldsymbol{u}$	
-	-	$\lambda(C_2)\boldsymbol{n}^T\boldsymbol{u}$	
+	-	minmod($\lambda(C_1), \lambda(C_2)$) $\boldsymbol{n}^T \boldsymbol{u}$	
-	+	$\lambda(C)\boldsymbol{n}^T\boldsymbol{u},\lambda'(C)=0$	

Moscow traffic (image from internet)

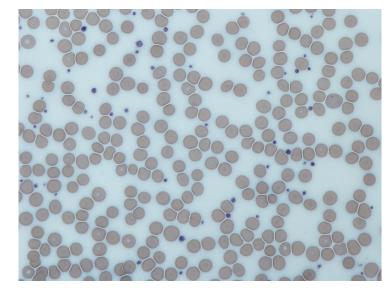
FVM for Platelets

- Flux expression: $t(\phi_c, \phi_f) = \tanh\left(\pi\left(1 \frac{\phi_c + \phi_f}{\phi_{max}}\right)\right)n^T(u D_p \nabla)\begin{pmatrix}\phi_c\\\phi_f\end{pmatrix}$
- Jacobian contribution:

$$J(\phi_c, \phi_f) = \begin{pmatrix} \frac{\partial t_1(\phi_c, \phi_f)}{\partial \phi_c} & \frac{\partial t_1(\phi_c, \phi_f)}{\partial \phi_f} \\ \frac{\partial t_2(\phi_c, \phi_f)}{\partial \phi_c} & \frac{\partial t_2(\phi_c, \phi_f)}{\partial \phi_f} \end{pmatrix} \begin{pmatrix} d\phi_c \\ d\phi_f \end{pmatrix} = Q(\phi_c, \phi_f) \begin{pmatrix} d\phi_c \\ d\phi_f \end{pmatrix}$$

• Matrix-weighted combination for two cells:

$$\Phi = M_1 \begin{pmatrix} \phi_{c,1} \\ \phi_{f,1} \end{pmatrix} + M_2 \begin{pmatrix} \phi_{c,2} \\ \phi_{f,2} \end{pmatrix}$$



Platelets (image from internet)

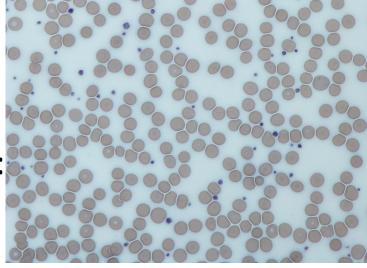
FVM for Platelets

- Flux expression: $t(\phi_c, \phi_f) = \tanh\left(\pi\left(1 \frac{\phi_c + \phi_f}{\phi_{max}}\right)\right)n^T(u D_p \nabla)\begin{pmatrix}\phi_c\\\phi_f\end{pmatrix}$
- Iterative search:

$$J(\Phi) = Q(\Phi)M_1 \begin{pmatrix} d\phi_{c,1} \\ d\phi_{f,1} \end{pmatrix} + Q(\Phi)M_2 \begin{pmatrix} d\phi_{c,2} \\ d\phi_{f,2} \end{pmatrix}$$

Matrices are obtained using eigendecomposition:

$$Q(\Phi) = L\Lambda L^{T},$$
$$M_{1} = \frac{1}{2}L(\operatorname{sgn}(\Lambda) + |\operatorname{sgn}(\Lambda)|)L^{T}$$
$$M_{2} = \frac{1}{2}L(\operatorname{sgn}(\Lambda) - |\operatorname{sgn}(\Lambda)|)L^{T}$$



Platelets (image from internet)

Approximation for Reactions

- Reactions lead to very **small time step** even with fully implicit integration.
- Problem bad contribution to off-diagonal terms of Jacobian matrix.
- Approach for terms leading to bad contribution:
 - time extrapolation, physics-based limiter for extrapolation
 - space interpolation

Approximation for Reactions

• Red terms are extrapolated from previous time steps:

• Fully implicit model with 13 unknowns.

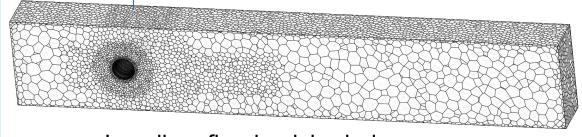
2 November 2020

Verification

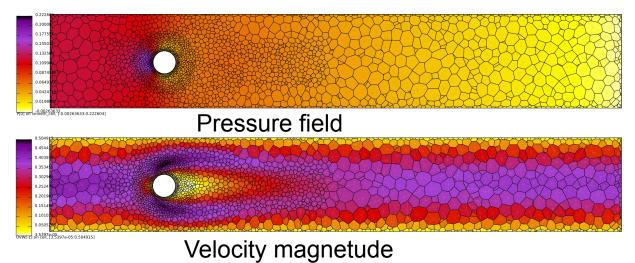
of the model

Viscous Flow Past a Cylinder

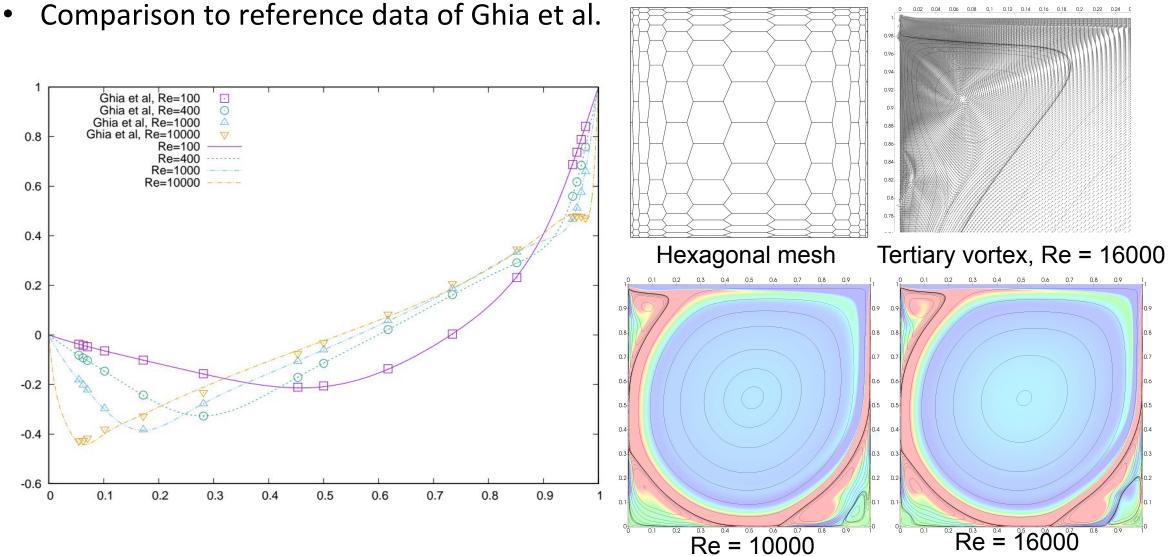
Refinement	Cells	Drag	Lift	Pressure drop
1	910	3.862	-0.08556	0.1481
2	4328	4.964	-0.02525	0.1854
3	24687	5.515	0.07256	0.1672
4	164806	5.876	0.00803	0.1890
3^{\dagger}	53211	6.064	0.01015	0.1801
→ 3 [‡]	98517	6.155	0.01006	0.1792
Schäfer & Turek [23]	-	6.05 - 6.25	0.008-0.01	0.165 - 0.175
Braack & Richter [7]	-	6.185331	0.00940	0.1713



Locally refined polyhedral mesh

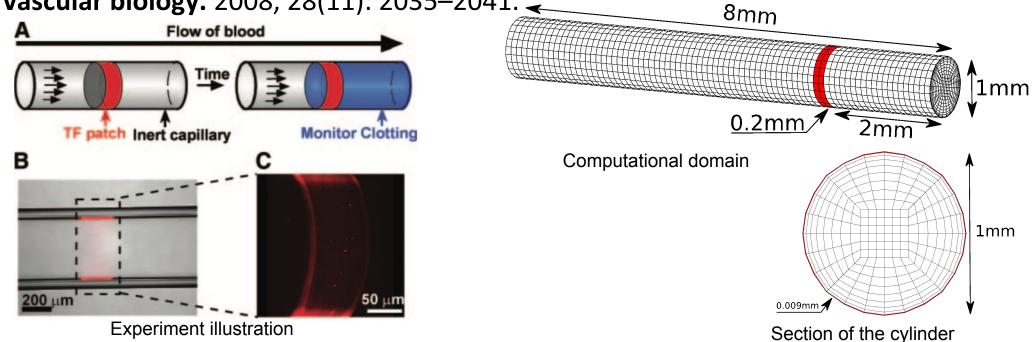


Cavity Flow at High Reynolds Numbers

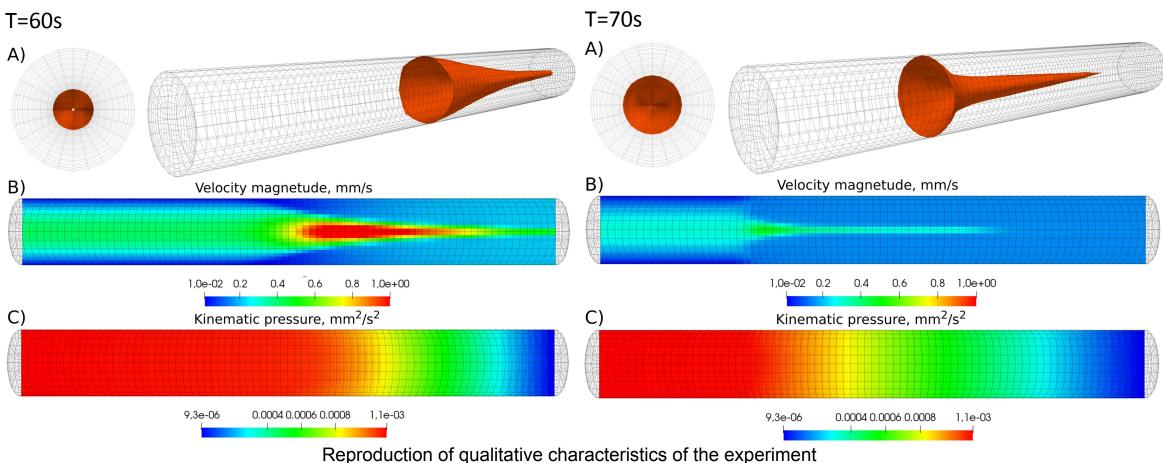


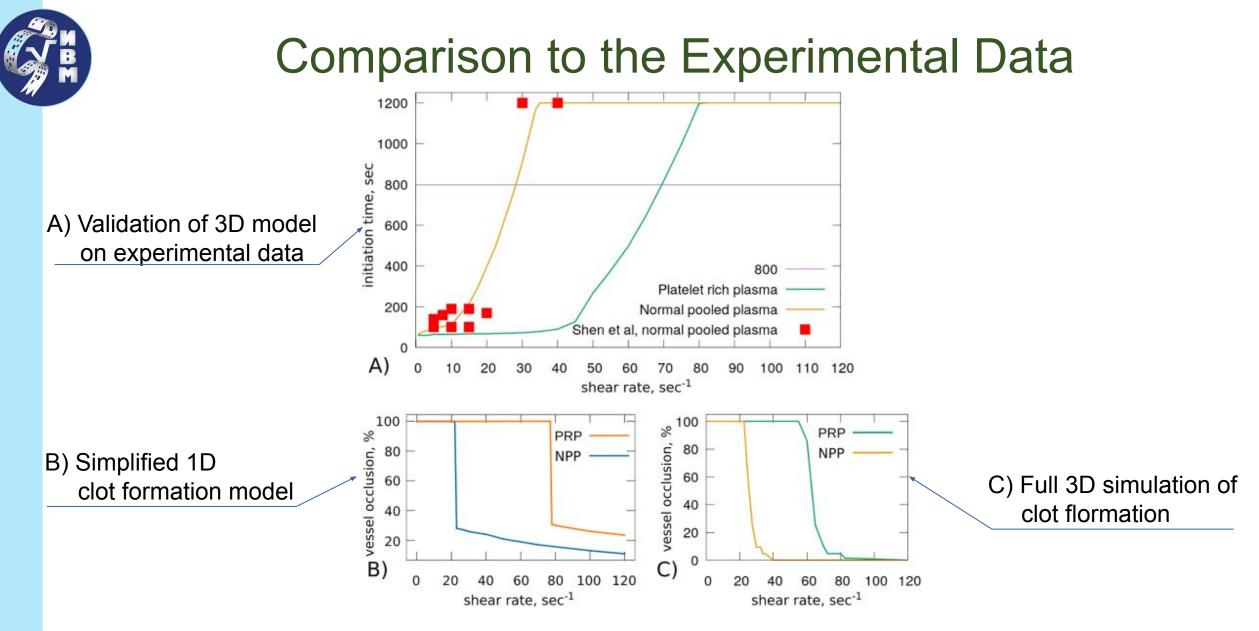
Comparison to the Experimental Data

 Based on the experimental research: Shen F., Kastrup C.J., Liu Y., Ismagilov R.F.: *Threshold response of initiation of blood coagulation by tissue factor in patterned microfluidic capillaries is controlled by shear rate.* Arteriosclerosis, thrombosis, and vascular biology. 2008, 28(11): 2035–2041.



Comparison to the Experimental Data



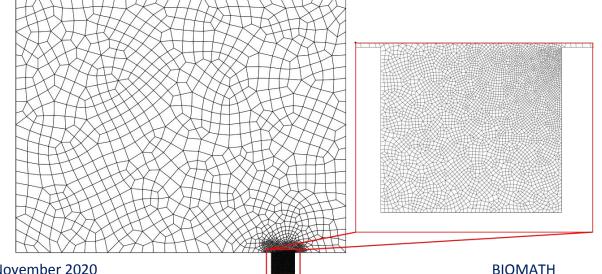


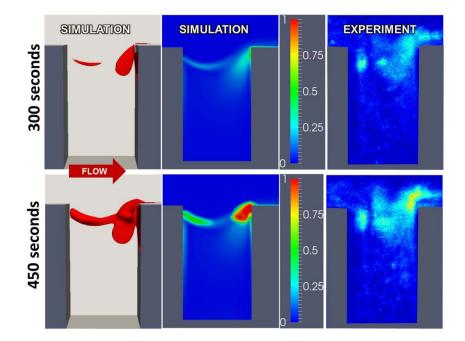
Bouchnita, A., Terekhov, K., Nony, P., Vassilevski, Y., & Volpert, V.: A mathematical model to quantify the effects of platelet count, shear rate, and injury size on the initiation of blood coagulation under venous flow conditions. PloS one, 15(7), e0235392, 2020

2 November 2020

Future Directions

- Clot formation due to von Willebrand factor in the flow with high share rate (Nadezhda Suslova)
- Automatic stabilization of chemical reactions (Ivan Butakov)





from Wei-Tai Wu et al, **Multi-Constituent Simulation** Of Thrombus Deposition

Thank you for your attention!

Contacts

- <u>KIRILL.TEREHOV@GMAIL.COM</u>
- <u>YURI.VASSILEVSKI@GMAIL.COM</u>

Links

• <u>WWW.INMOST.ORG</u>

