Стохастическое моделирование перехода клеток и вирусных частиц между двумя лимфоузлами

Н.В. Перцев^{1),2)}

- 1) Институт математики им. С.Л. Соболева СО РАН, Омский филиал
 - 2) Институт вычислительной математики им. Г.И. Марчука РАН

Работа выполнена при финансовой поддержке

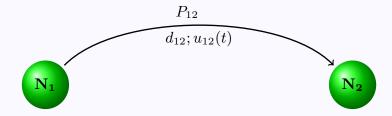
- 1) Госзадания ИМ СО РАН, проект 0314-2019-0009,
- 2) Российского Научного Фонда, проект 18-11-00171

ИВМ РАН, РГ по биоматематике Москва, 2-3 ноября 2020 г.

1. Введение.

Доклад посвящен задаче, связанной с разработкой стохастической компартментной модели динамики ВИЧ-1 инфекции в организме человека.

- ullet Суть задачи состоит в описании процесса перехода вирусных частиц V и продуктивно-инфицированных клеток I между лимфатическими узлами $N_1,\,N_2$ по соединяющему их лимфатическому сосуду P_{12} .
- ullet Сложность задачи обусловлена тем, что в процессе перехода по лимфатическому сосуду клетки I могут производить вирусные частицы W, причем $I,\,V,\,W$ могут погибать в процессе перехода.



Здесь: d_{12} – длина сосуда $P_{12},\ u_{12}(t)$ – скорость течения лимфы по сосуду $P_{12}.$

Использование гидродинамических моделей, описывающих динамику лимфы в организме человека, совместно со стохастическим подходом – практически «безнадежная затея». Нужно использовать какое-либо параметрическое описание.

2. Описание модели.

Пусть I — продуктивно-инфицированная клетка, которая в момент времени t начала переход из N_1 в N_2 по лимфатическому сосуду P_{12} .

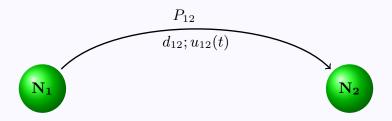
Обозначим: $\Delta(t)$ — продолжительность перехода клетки I по P_{12} . Тогда $t + \Delta(t)$ — момент завершения перехода, если клетка I не погибнет за время перехода.

Полагаем, что $\Delta(t)$ такова:

1) если
$$t_1 < t_2$$
, то $t_1 + \Delta(t_1) < t_2 + \Delta(t_2)$,

$$2) \ \Delta_* \leqslant \Delta(t) \leqslant \Delta^{**},$$

где $\Delta_*, \, \Delta^{**}$ – положительные константы.



Схематическое представление «судьбы» клетки I и произведенных ею вирусных частиц W таково:

$$I \xrightarrow{\lambda} D; I \xrightarrow{\nu} I + W; W \xrightarrow{\mu} D;$$
 (1)

$$I|_t \longrightarrow I_2|_{t+\Delta(t)}, \quad W|_{t_W} \longrightarrow V_2|_{t+\Delta(t)},$$
 (2)

D – погибшие вирусные частицы W и погибшая клетка I,

 t_W — момент появления вирусной частицы W, произведенной клеткой I за время ее перехода, $t < t_W < t + \Delta(t),$

 $I_2,\,V_2$ – продуктивно-инфицированная клетка и вирусная частица в лимфоузле $N_2.$

В процессе перехода клетка I погибает с интенсивностью $\lambda > 0$.

В процессе перехода клетка I с интенсивностью $\nu>0$ производит одну вирусную частицу W, которая перемещается «рядом» с клеткой I.

Каждая появившаяся вирусная частица W погибает с интенсивностью $\mu>0.$

Если клетка I не погибла в процессе перехода, то в момент времени $t+\Delta(t)$ она становится клеткой I_2 .

Если вирусная частица W появилась в момент времени t_W и не погибла в процессе перехода, то в момент времени $t+\Delta(t)$ она становится вирусной частицей V_2 .

Соотношения (1)

$$I \stackrel{\lambda}{\longrightarrow} D; \ \ I \stackrel{
u}{\longrightarrow} I + W; \ \ W \stackrel{\mu}{\longrightarrow} D,$$

можно интерпретировать в терминах ветвящихся случайных процессов.

За промежуток времени $(t+s,t+s+h), s\geqslant 0,\ h\to +0,$ клетка I погибает с вероятностью $\lambda h+o(h),$ клетка I производит одну вирусную частицу W с вероятностью $\nu h+o(h).$

За этот же промежуток времени вирусная частица W погибает с вероятностью $\mu h + o(h)$; указанные события не происходят с вероятностью $1 - (\nu + \lambda + \mu)h + o(h)$.

Соотношения (2)

$$I|_t {\longrightarrow} I_2|_{t+\Delta(t)}, \;\; W|_{t_W} {\longrightarrow} V_2|_{t+\Delta(t)},$$

интерпретируются как описание клетки I и вирусных частиц W, которые завершают свои переходы в момент времени $t+\Delta(t)$, и превращаются соответственно в I_2 и V_2 .

Клетка I и все вирусные частицы W ведут себя независимо друг от друга и от предшествующих событий.

Пусть $0 \leqslant s \leqslant \Delta(t)$. Обозначим:

I(t+s) – индикатор существования клетки $I\ (=0$ или 1),

W(t+s) — численность вирусных частиц W в момент времени t+s.

По условию I(t) = 1, W(t) = 0.

Для момента времени $t + \Delta(t)$ получаем следующие выражения для численности продуктивно-инфицированных клеток I_2 и вирусных частиц V_2 в лимфоузле N_2 :

$$I_2(t + \Delta(t)) = I_2(t + \Delta(t) - 0) + I(t + \Delta(t)),$$
 (3)

$$V_2(t + \Delta(t)) = V_2(t + \Delta(t) - 0) + W(t + \Delta(t)).$$
 (4)

В формулах (3), (4) нужно знать совместный закон распределения пары $I(t+\Delta(t)),\,W(t+\Delta(t)),$ а именно:

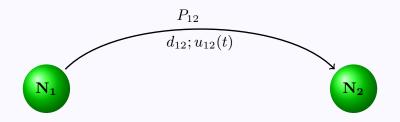
$$P(x,y) = P\{I(t + \Delta(t)) = x, \ W(t + \Delta(t)) = y\},$$

$$x = 0; 1; \ y = 0, 1, 2, \dots$$
 (5)

Выражение для P(x,y) находится с помощью производящих функций (см., например, Б.А. Севастьянов, Ветвящиеся процессы, М.:, Наука, 1971).

Формула (5) для P(x,y) имеет сложный вид и не очень удобна для применения.

Поэтому значения пары $I(t+\Delta(t)),\ W(t+\Delta(t))$ находятся с помощью метода Монте-Карло.



 $\overline{\text{Пусть}}$ в момент времени t вирусная частица V начала переход из N_1 в N_2 по P_{12} :

$$V \xrightarrow{\mu} D, V|_{t} \longrightarrow V_{2}|_{t+\Delta(t)}.$$
 (6)

Тогда

$$V_2(t + \Delta(t)) = V_2(t + \Delta(t) - 0) + V(t + \Delta(t)),$$
 (7)

где

$$V(t+\Delta(t))=1$$
 с вероятностью $P_1=e^{-\mu\Delta(t)},$ $V(t+\Delta(t))=0$ с вероятностью $P_0=1-e^{-\mu\Delta(t)},$ μ – интенсивность гибели частицы $V.$

3. Некоторые аналитические и численные результаты.

Используя методы теории ветвящихся случайных процессов, можно получить выражения для математических ожиданий $EI(t+\Delta(t)),\, EW(t+\Delta(t)),\,$ а именно:

$$EI(t + \Delta(t)) = e^{-\lambda \Delta(t)}, \tag{8}$$

$$EW(t+\Delta(t))=rac{
u}{\mu-\lambda}(e^{-\lambda\Delta(t)}-e^{-\mu\Delta(t)}),\,\,{
m ec}$$
ли $\mu
eq\lambda,\,\,\,(9)$

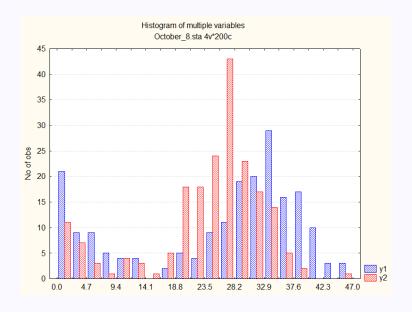
$$EW(t+\Delta(t))=
u\,\Delta(t)\,e^{-\mu\Delta(t)},\,\,{
m ec}$$
ли $\mu=\lambda.$ (10)

Из (9), (10) находим $\Delta(t)_{\max}$ – продолжительность перехода, при которой достигается максимум $EW(t+\Delta(t))$:

$$\Delta(t)_{\max} = \frac{1}{\lambda - \mu} \ln \frac{\lambda}{\mu}, \,\, \text{если} \,\, \mu \neq \lambda,$$
 (11)

$$\Delta(t)_{\mathrm{max}} = rac{1}{\mu}, \,\, \mathrm{ec}$$
ли $\mu = \lambda.$ (12)

На рисунке приведены типичные гистограммы распределения $y=W(t+\Delta(t))$: 1) $\Delta(t)>\Delta(t)_{\max}$, 2) $\Delta(t)<\Delta(t)_{\max}$. Отклонения $\Delta(t)$ от $\Delta(t)_{\max}$ взяты не очень большими.



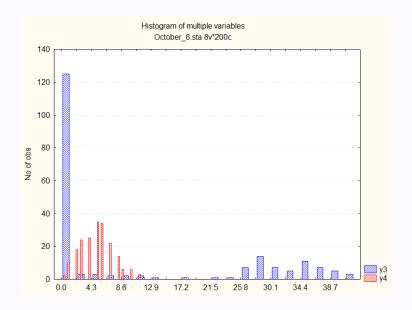
Здесь и далее для построения гистограмм и статистической обработки данных (критерий χ^2) использован пакет «Статистика», объем выборки n=200.

Условное распределение y_1 (при условии $y_1 > 15$) пуассоновское, p - level = 0.84.

Условное распределение y_2 (при условии $y_2 > 10$) пуассоновское, p - level = 0.85.

Следующий рисунок содержит гистограммы распределения величины $y=W(t+\Delta(t))$ для случаев:

3)
$$\Delta(t) >> \Delta(t)_{\text{max}}$$
, 4) $\Delta(t) << \Delta(t)_{\text{max}}$.

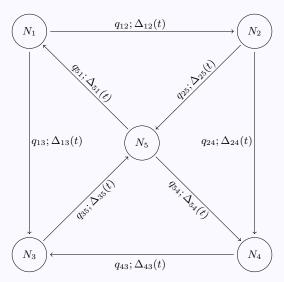


Видно, как на распределение $y=W(t+\Delta(t))$ существенно влияет значение $\Delta(t).$ Закон распределения y_4 – пуассоновский, p-level=0.42.

Закон распределения y_3 имеет довольно «экзотический» вид. Возникающее распределение может интерпретироваться как создание «депо» вирусных частиц.

4. Развитие модели и алгоритма.

Приведенные формулы «тиражируются» на случай нескольких лимфоузлов и нескольких лимфатических сосудов, например,



Здесь q_{ij} – вероятности перехода из N_i в $N_j,\,i \neq j.$

Вычисления по формулам типа (3), (4), (7) допускают естественное распараллеливание.