Прямое статистическое моделирование динамики ВИЧ-1 инфекции на основе немарковской стохастической модели

Логинов К. К.^{*a*, 1)}, Перцев Н. В.^{*a*, *b*, 2)}, Бочаров Г. А.^{*b*, *c*, 2), 3)}, Топчий В. А.^{*a*, 1)}

а — Институт математики им. С. Л. Соболева СО РАН, Омский филиал
 b — Институт вычислительной математики им. Г. И. Марчука РАН
 с — Отделение Московского центра фундаментальной и прикладной
 математики в ИВМ РАН

XII конференция по математическим моделям и численным методам в биоматематике Москва, 2–3 ноября 2020 г.

Работа выполнена при финансовой поддержке

1) Госзадания ИМ СО РАН, проект 0314-2019-0009

2) Российского научного фонда, проект 18-11-00171

3) Министерства науки и образования РФ, соглашение 075-15-2019-1624

Введение

В работе рассмотрен подход к численному моделированию начальной фазы ВИЧ-1 инфекции в рамках дискретно-непрерывной двухкомпартментной стохастической модели.

Известно, что в большинстве случаев заражения начало острой инфекции связано с проникновением малого числа инфекционных вирусных частиц и их локальной репликацией в слизистых оболочках или ближайшем дренирующем область заражения лимфатическом узле.

Эта локальная фаза инфекции (фаза эклипса) в случае успешного развития переходит во вторую фазу генерализации инфекции (распространение вирусов по всей лимфатической системе).

Цель работы: изучение детерминированных и случайных факторов, определяющих элиминацию инфекции в фазе эклипса, а также построение биологически содержательной модели, рассматривающей процессы локальной репликации вирусов (первый компартмент) и генерализации инфекции во всем организме (второй компартмент).

Обозначения компонентов иммунной системы и вирусных частиц

Рассмотрим два компартмента N_{11} , N_{22} , соединенных трубками N_{12} , N_{21} . Динамика ВИЧ-1 инфекции в отдельном компартменте N_{ii} , i = 1, 2, описывается с использованием следующих компонентов:

- *S* клетки костного мозга и лимфоидной ткани (источник производства лимфоцитов и клеток различных типов);
- V_{ii} вирионы (вирусные частицы);
- Т_{ii} клетки-мишени для вирионов (CD4+ Т-лимфоциты, дендритные клетки, макрофаги);
- *I*_{ii} продуктивно-инфицированные клетки (клетки, производящие вирусные частицы);
- *E*_{ii} лимфоциты-эффекторы (цитотоксические CD8+ Т-лимфоциты);
- *K_{ii}* клетки-предшественники лимфоцитов-эффекторов (клетки *S*, стимулированные к размножению и превращению в клетки *E_{ii}*).

Обозначим через *D* — совокупность всех погибших клеток и вирионов.

Схема модели для отдельного компартмента N_{ii}

На рисунке представлен фрагмент модели, демонстрирующий развитие ВИЧ-1 инфекции в компартменте N_{ii} , включая начало перехода вирионов и клеток в компартмент N_{ji} по трубке N_{ij} , i, j = 1, 2, $i \neq j$.

Обозначим через

 V_{ij} , T_{ij} , I_{ij} , E_{ij} — вирионы, клетки-мишени, продуктивно-инфицированные клетки и лимфоциты-эффекторы соответственно, находящиеся в состоянии перехода между компартментами N_{ii} , N_{jj} по трубке N_{ij} , $i, j = 1, 2, i \neq j$.

Предполагается, что переходы вирионов и клеток по трубкам N_{12} , N_{21} являются однонаправленными: вирионы и клетки из компартмента N_{11} поступают в компартмент N_{22} только по трубке N_{12} , из компартмента N_{22} в компартмент N_{11} — только по трубке N_{21} .

Пусть W_{ij} — вирионы, которые были произведены клетками I_{ij} за время своего перехода между компартментами N_{ii} , N_{jj} по трубке N_{ij} .

Кроме этого считаем, что клетки K_{ii} не участвуют в переходах между компартментами.

Дополнительно отметим, что в модели не учитываются возможные взаимодействия клеток T_{ij} , I_{ij} , E_{ij} и вирионов V_{ij} , W_{ij} , приводящие к изменению численности этих клеток и вирионов в трубке N_{ij} .

Схема модели для отдельной трубки N_{ii}

На рисунке представлен фрагмент модели, описывающий гибель и переходы вирионов и клеток между компартментами N_{ii} , N_{jj} по трубке N_{ij} , $i, j = 1, 2, i \neq j$.

Обозначим

$$Z_{ii}(t) = (T_{ii}(t), I_{ii}(t), V_{ii}(t), E_{ii}(t), K_{ii}(t))$$

вектор, содержащий численности соответствующих клеток и вирусных частиц в компартменте N_{ii} (для каждого фиксированного t компоненты вектора $Z_{ii}(t)$ являются неотрицательными целочисленными случайными величинами).

Для учета стадий развития клеток-предшественников эффекторов введем семейство уникальных типов (точечное распределение) клеток K_{ii} , существующих в момент времени t:

$$\Omega_{ii}^{K}(t) = \left\{ t_{ii,1}^{K} + \omega_{ii}; \dots; t_{ii,K_{ii}(t)}^{K} + \omega_{ii} \right\}, \ K_{ii}(t) > 0,$$
$$0 < t_{ii,1}^{K} < \dots < t_{ii,K_{ii}(t)}^{K} \leqslant t < t_{ii,1}^{K} + \omega_{ii} < \dots < t_{ii,K_{ii}(t)}^{K} + \omega_{ii},$$

где $t_{ii,k}$ — момент появления клетки K_{ii} , $k = 1, \ldots, K_{ii}(t)$; $t_{ii,k} + \omega_{ii}$ — момент превращения клетки K_{ii} в совокупность из $n_{E_{ii}}$ клеток E_{ii} . В случае $K_{ii}(t) = 0$ полагаем $\Omega_{ii}^{\kappa}(t) = \emptyset$.

Стохастическая модель динамики ВИЧ-1 инфекции

Обозначим

$$Z_{ij}(t) = (T_{ij}(t), I_{ij}(t), I_{ij}^{+}(t), V_{ij}(t), E_{ij}(t), W_{ij}(t))$$

вектор, содержащий численности соответствующих клеток и вирусных частиц, находящихся в состоянии перехода между N_{ii} , N_{jj} по трубке N_{ij} ($I_{ij}^+(t)$ — случайная величина, характеризующая клетки I_{ij} вместе с числом произведенных вирионов W_{ij} в процессе перехода).

Для описания популяций клеток T_{ij} , E_{ij} и вирионов V_{ij} используем семейства их уникальных типов $\Omega_{ij}^T(t)$, $\Omega_{ij}^E(t)$, $\Omega_{ij}^V(t)$.

$$\begin{split} \Omega_{ij}^{T}(t) &= \left\{ t_{ij,1}^{T} + \Delta_{ij}(t_{ij,1}^{T}); \ldots; t_{ij,T_{ij}(t)}^{T} + \Delta_{ij}(t_{ij,T_{ij}(t)}^{T}) \right\}, \ T_{ij}(t) > 0, \\ 0 &< t_{ij,1}^{T} < \cdots < t_{ij,T_{ij}(t)}^{T} \leqslant t < t_{ij,1}^{T} + \Delta_{ij}(t_{ij,1}^{T}) < \cdots < t_{ij,T_{ij}(t)}^{T} + \Delta_{ij}(t_{ij,T_{ij}(t)}^{T}), \\ \text{где } t_{ij,k}^{T} &- \text{момент начала перехода клетки } T_{ij} \text{ из компартмента } N_{ii} \text{ в } N_{jj} \text{ по трубке } N_{ij}, \ k = 1, \ldots, T_{ij}(t); \\ t_{ij,k}^{T} + \Delta_{ij}(t_{ij,k}^{T}) &- \text{момент завершения перехода при условии, что клетка } T_{ij} \\ \text{не погибнет в процессе перехода.} \end{split}$$

При $T_{ij}(t) = 0$ полагаем $\Omega_{ij}^{T}(t) = \emptyset$.

Построение $\Omega_{ij}^{E}(t)$, $\Omega_{ij}^{V}(t)$ проводится аналогично $\Omega_{ij}^{T}(t)$.

Стохастическая модель динамики ВИЧ-1 инфекции

Для описания популяций клеток I_{ij} и вирионов W_{ij} используется «нагруженное» семейство $\Omega_{ij}^{I,W}(t)$ уникальных типов клеток I_{ij} :

$$\Omega_{ij}^{I,W}(t) = \left\{ \Lambda(t_{ij,1}^{I} + \Delta_{ij}(t_{ij,1}^{I})); \dots; \Lambda(t_{ij,I_{ij}^{+}(t)}^{I} + \Delta_{ij}(t_{ij,I_{ij}^{+}(t)}^{I})) \right\}, \ I_{ij}^{+}(t) > 0,$$
$$\Omega_{ij}^{I,W}(t) = \emptyset, \quad I_{ij}^{+}(t) = 0.$$

Случайная величина $I_{ij}^+(t)$ отражает общее число клеток I_{ij} , каждая из которых появляется в N_{ij} в некоторый момент времени t_{ij}^I , и к моменту $t_{ij}^I + \Delta_{ij}(t_{ij}^I) > t$ характеризуется тройкой

$$\Lambda(t_{ij}^{I} + \Delta_{ij}(t_{ij}^{I})) = \left(t_{ij}^{I} + \Delta_{ij}(t_{ij}^{I}), X_{ij}(t_{ij}^{I} + \Delta_{ij}(t_{ij}^{I})), Y_{ij}(t_{ij}^{I} + \Delta_{ij}(t_{ij}^{I}))\right),$$

величина $X_{ij}(t_{ij}^l + \Delta_{ij}(t_{ij}^l))$ равна 0 или 1, если клетка I_{ij} не дожила или дожила до момента $t_{ij}^l + \Delta_{ij}(t_{ij}^l)$ соответственно;

величина $Y_{ij}(t_{ij}^{l} + \Delta_{ij}(t_{ij}^{l})) = m_{ij}^{W} \ge 0$ — численность произведенных клеткой I_{ij} вирионов W_{ij} .

(См. Перцев Н. В., доклад «Стохастическое моделирование перехода клеток и вирусных частиц между двумя лимфоузлами»; XII конференция по математическим моделям и численным методам в биоматематике; 2 ноября 2020 г.)

Алгоритм численного моделирования

Начальные данные

Полагаем $t_0 = 0$; $Z_{ij}(t_0) \ge 0$ — начальные численности компонентов системы в компартментах и трубках, $i, j = 1, 2, i \ne j$; $\Omega_{ii}^{K}(t_0), \Omega_{ij}^{T}(t_0), \Omega_{ij}^{E}(t_0), \Omega_{ij}^{V}(t_0), \Omega_{ij}^{I,W}(t_0) - фиксированные семейства.$

Изменение состояния

Динамика переменных $Z_{ij}(t)$ и семейств уникальных типов задается следующими рекуррентными соотношениями:

$$m_{m+1} = t_m + \Delta t_m, \quad m = 0, 1, 2, \dots,$$

 $Z_{ij}(t_{m+1}) = Z_{ij}(t_m) + \Delta Z_{ij}(t_m),$

 $\Omega_{ii}^{K}(t_{m+1}) = \Omega_{ii}^{K}(t_{m}) \cup \{t_{m+1} + \omega_{ii}\}$ или $\Omega_{ii}^{K}(t_{m+1}) = \Omega_{ii}^{K}(t_{m}) \setminus \left\{t_{ii,1}^{K} + \omega_{ii}\right\},$

$$\Omega_{ij}^{I,W}(t_{m+1}) = \Omega_{ij}^{I,W}(t_m) \cup \{\Lambda(t_{m+1} + \Delta_{ij}(t_{m+1}))\}$$

или $\Omega_{ij}^{I,W}(t_{m+1}) = \Omega_{ij}^{I,W}(t_m) \setminus \{\Lambda(t_{m+1})\},$

$$\Omega_{ij}^{T}(t_{m+1}) = \Omega_{ij}^{T}(t_{m}) \cup \{t_{m+1} + \Delta_{ij}(t_{m+1})\}$$
 или $\Omega_{ij}^{T}(t_{m+1}) = \Omega_{ij}^{T}(t_{m}) \setminus \{t_{m+1}\}$
(для $\Omega_{ij}^{E}(t_{m+1}), \Omega_{ij}^{V}(t_{m+1})$ аналогично $\Omega_{ij}^{T}(t_{m+1})),$

где Δt_m , $\Delta Z_{ij}(t_m)$ — последовательности случайных величин, функции распределения которых выводятся на основе предположений модели.

Планирование вычислительных экспериментов

При планировании экспериментов изучался детерминированный аналог стохастической модели в форме системы дифференциальных уравнений с запаздыванием, в котором функции $\Delta_{ij}(t) = const > 0$.

Детерминированная модель имеет тривиальное положение равновесия:

$$T_{11} = T_{11}^{(*)} > 0, I_{11} = V_{11} = E_{11} = 0, \ T_{22} = T_{22}^{(*)} > 0, I_{22} = V_{22} = E_{22} = 0,$$

интерпретируемое как отсутствие ВИЧ-1 инфекции в организме. Были получены условия локальной асимптотической устойчивости и неустойчивости тривиального положения равновесия в терминах R_0 , где R_0 — базовое репродуктивное число.

Отметим, что стохастическая модель также допускает тривиальный частный случай (отсутствие инфекции). При этом численность клеток-мишеней $T_{ii}(t)$ описывается случайным процессом гибели с иммиграцией (без учета переходов между компартментами).

Кроме того, были учтены некоторые сведения по клиническим исследованиям начальной фазы развития ВИЧ-1 инфекции:

- Медиана продолжительности фазы эклипса составляет 7 суток с межквартильным диапазоном 4–15 суток;
- Область допустимых значений начальной вирусной нагрузки составляет от 1 до 2500 вирусных частиц на организм.

Целью вычислительных экспериментов являлось исследование возможности искоренения ВИЧ-1 инфекции за некоторый конечный промежуток времени, считая от момента инфицирования здорового организма. Обозначим

$$V(t) = V_{11}(t) + V_{12}(t) + W_{12}(t) + V_{22}(t) + V_{21}(t) + W_{21}(t),$$

$$I(t) = I_{11}(t) + I_{12}(t) + I_{22}(t) + I_{21}(t),$$

общую численность, соответственно, вирионов и инфицированных клеток в системе.

При проведении экспериментов изучалась вероятность искоренения ВИЧ-1 инфекции $P_0(t) = P\{V(t) = 0, I(t) = 0\}$ в момент времени t > 0 (при этом t = 0 — начальный момент инфицирования организма) в зависимости от:

- параметров, для которых асимптотически устойчиво или не устойчиво тривиальное положение равновесия детерминированной модели (R₀ < 1 или R₀ > 1);
- параметров, участвующих в описании динамики компонент специфического иммунного ответа;
- начального числа вирусных частиц.

Моделирование

Моделирование осуществлялось с использованием метода Монте-Карло на промежутке [0; T], где T = 180; 250 суток.

Количество независимых реализаций изучаемого случайного процесса равно N=1000.

При моделировании применялись датчики псевдослучайных чисел, описанные в работах:

- Михайлов Г.А., Войтишек А.В. Численное статистическое моделирование. Методы Монте-Карло. М.: Академия, 2006. 368 с.
- Marchenko M.A., Mikhailov G.A., Russ. J. Numer. Anal. Math. Modelling, 2002, V. 17, P. 113-124.

Параметры

Значения параметров модели подбирались в соответствии с работами:

- K. A. Pawelek et al., Math. Biosci., 2012, Vol. 235, No. 1, pp. 98-109.
- G. Bocharov et al., Math. Model. Nat. Phenom., 2012, Vol. 7, No. 5, pp. 78-104.
- N. V. Pertsev et al., J. Appl. Industr. Math., 2019, Vol. 13, No. 1, pp. 103-117.
- К. К. Логинов и др. Мат. биол. и биоинфор. 2019. Т. 14. № 1. С. 188–203.

Для всех экспериментов $T_{ii}(0) = [T_{ii}^{(*)}] > 0$, $I_{ii}(0) = E_{ii}(0) = K_{ii}(0) = 0$, $T_{ij}(0) = I_{ij}(0) = I_{ij}^{+}(0) = E_{ij}(0) = V_{ij}(0) = W_{ij}(0) = 0$, $i, j = 1, 2, i \neq j$.

 $\Delta_{12}(t) = \Delta_{21}(t) = 0.083$ суток, $V_{11}(0) = V_{22}(0) = V^{(0)}.$

В таблицах представлены интервальные оценки вероятности $P_0(t)$ для различных t и начального количества вирионов $V^{(0)}$ на уровне доверия 0.95.

Эксперимент 1. R₀ < 1.

t, сутки	$V^{(0)} = 10$	$V^{(0)} = 10^2$	$V^{(0)} = 10^3$
1	0.310 ± 0.029	0	0
2	0.913 ± 0.017	0.443 ± 0.031	0
3	0.965 ± 0.011	0.759 ± 0.026	0.051 ± 0.014
5	0.980 ± 0.009	0.858 ± 0.022	0.209 ± 0.025
10	0.993 ± 0.005	0.929 ± 0.016	0.461 ± 0.031
50	1	0.993 ± 0.005	0.920 ± 0.017
100	1	1	0.983 ± 0.008
250	1	1	1

Эксперимент 2. $R_0 > 1$.

t, сутки	$V^{(0)} = 10$	$V^{(0)} = 10^2$	$V^{(0)} = 10^3$
1	0.293 ± 0.028	0	0
2	0.832 ± 0.023	0.142 ± 0.022	0
3	0.839 ± 0.023	0.256 ± 0.027	0
5	0.857 ± 0.022	0.239 ± 0.026	0
10	0.871 ± 0.021	0.232 ± 0.026	0
50	0.853 ± 0.022	0.252 ± 0.027	0
100	0.854 ± 0.022	0.256 ± 0.027	0
180	0.863 ± 0.021	0.252 ± 0.027	0

Эксперимент 3. В третьем эксперименте компартмент N_{11} рассматривался как отдельный лимфоузел в лимфатической системе человека, а компартмент N_{22} в качестве «совокупности» остальных лимфоузлов. Соответственно, трубка N_{12} интерпретировалась как «совокупность» всех исходящих (эфферентных) лимфатических сосудов из лимфоузла N_{11} , трубка N_{21} — «множество» всех входящих (афферентных) сосудов в узел N_{11} из остальных лимфоузлов. Начальная численность вирионов $V_{11}(0) = V^{(0)} = 10$, $V_{22}(0) = 0$. Продолжительности переходов

$$\begin{split} &\Delta_{21}(t)=0.001, \quad \Delta_{12}(t)=\alpha_0+\alpha_1\cos(\theta t)+\alpha_2\cos(2\theta t)+\alpha_3\cos(3\theta t)+\alpha_4\cos(0.5\theta t), \\ &\alpha_0=0.083, \alpha_1=0.001, \alpha_2=0.002, \alpha_3=0.0005, \alpha_4=0.0025\,(\text{сутки}), \theta=1\,(\text{сутки}^{-1}). \end{split}$$
 Кроме того, по сравнению с экспериментом 2 значительно усилен специфический иммунный ответ (увеличен параметр $\gamma_{11}^{(I,E)}$).

Типичные реализации переменных $\log_{10}(I_{11}(t)+1)$ (**a**), $\log_{10}(V_{11}(t)+1)$ (**b**), $\log_{10}(T_{11}(t)+1)$ (**c**), $\log_{10}(E_{11}(t)+1)$ (**d**) в компартменте N_{11}

Типичные реализации переменных $\log_{10}(I_{12}(t)+1)$ (**a**), $\log_{10}(V_{12}(t)+W_{12}(t)+1)$ (**b**), $\log_{10}(T_{12}(t)+1)$ (**c**), $\log_{10}(E_{12}(t)+1)$ (**d**) в трубке N_{12}

Вычислительные эксперименты

Типичные реализации переменных $\log_{10}(I_{21}(t)+1)$ (**a**), $\log_{10}(V_{21}(t)+W_{21}(t)+1)$ (**b**), $\log_{10}(T_{21}(t)+1)$ (**c**), $\log_{10}(E_{21}(t)+1)$ (**d**) в трубке N_{21}

Типичные реализации переменных $\log_{10}(I_{22}(t)+1)$ (**a**), $\log_{10}(V_{22}(t)+1)$ (**b**), $\log_{10}(T_{22}(t)+1)$ (**c**), $\log_{10}(E_{22}(t)+1)$ (**d**) в компартменте N_{22}

Прямое статистическое моделирование динамики ВИЧ-1 инфекции на основе немарковской стохастической модели

Благодарю за внимание