

Реакционно-диффузионная модель сосуществования вирусов

02.11.2020

Discover the World in One University

Problem statement

Reaction diffusion equation of the evolution of virus density depending on the genotype x (One virus).

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} + au(1 - bI(u)) - uf(u) - \sigma(x)u$$

$$u(x,t)$$
 - virus density distribution
 x - virus genotype
 t - time

Description	Analytical	Numerical	Particular	Generalization of	576.56
of the model ● ● ○ ○ ○	solution ○ ○ ○ ○	experiments	case	mortality function	RUDN university

Diffusion term - Chain mutations

Genotype \mathcal{X}_i :

 $x_{i-1} \to x_i, x_i \to x_{i-1};$ $x_{i+1} \to x_i, x_i \to x_{i+1}$ $u_i = u(x_i)$

• Assuming that the sequence of mutations are reversible, we can write the equation for the density \mathcal{U}_i of virus with genotype \mathcal{X}_i :

$$\frac{du_i}{dt} = \mu \left(u_{i-1} - u_i \right) + \mu \left(u_{i+1} - u_i \right) \quad \Leftrightarrow \quad$$

 μ - frequency of mutations

Description	Analytical	Numerical	Particular	Generalization of	57 7.57
of the model ● ● ● ○ ○	solution ○ ○ ○ ○	experiments	case	mortality function O	RUDN university

Virus reproduction

$$u(1 - bI(u))$$

Let I(u) = u(x, t) conventional logistic term.

$$I(u) = \int_{-\infty}^{\infty} \phi(y - x)u(x, t)dx$$

non-local contamination of host cells.

$$I(u) = \int_{-\infty}^{\infty} u(x,t) dx$$

total quantity virus.

Virus elimination

Immune response

uf(u)

- Stimulated by antigens
 (increasing branch of f(u))
- Can be suppressed in the case of high virus concentration (decreasing branch of f(u))

Death of virus

- Virus natural death.
- Describes reaction to some antiviral treatment.
- Depends of virus genotype.

Description	Analytical	Numerical	Particular	Generalization of	
of the model ● ● ● ● ●	solution ○ ○ ○ ○	experiments	case	mortality function \circ	RUDN university

Proposed model

Reaction-diffusion model of viruses' competition

$$\begin{cases} \frac{\partial u}{\partial t} = D_1 \frac{\partial^2 u}{\partial x^2} + \alpha_1 u (1 - \beta_1 I(u) - \gamma_1 I(v)) - \sigma_1(x) u, \\\\ \frac{\partial v}{\partial t} = D_2 \frac{\partial^2 v}{\partial y^2} + \alpha_2 v (1 - \beta_2 I(u) - \gamma_2 I(v)) - \sigma_2(y) v. \end{cases}$$

$$u(x,t), v(y,t)$$

 x, y

- virus density distribution
- virus genotypes
 - time

Description	Analytical	Numerical	Particular	Generalization of	576-56
of the model ● ● ● ● ●	solution ● ○ ○ ○	experiments 0 0	case	mortality function \circ	RUDN university

Existence of stationary solutions

$$\begin{cases} D_1 u'' + \alpha_1 u (1 - \beta_1 I(u) - \gamma_1 I(v)) - \sigma_1(x) u = 0, \\ D_2 v'' + \alpha_2 v (1 - \beta_2 I(u) - \gamma_2 I(v)) - \sigma_2(y) v = 0 \end{cases}$$

$$I(u) = \int_{-\infty}^{\infty} u(x) dx,$$
$$I(v) = \int_{-\infty}^{\infty} v(y) dy.$$

$$u(\pm \infty) = 0, u(x) > 0$$
$$v(\pm \infty) = 0, v(y) > 0$$
$$\sigma_1(x), \sigma_2(y)$$

Description	Analytical	Numerical	Particular	Generalization of	
of the model ● ● ● ● ●	solution ● ● ● ○	experiments	case	mortality function O	RUDN university

Example of analytical solution

Description	Analytical	Numerical	Particular	Generalization of	576-56
of the model ● ● ● ● ●	solution ● ● ● ○	experiments	case	mortality function \circ	RUDN university

Example of analytical solution

Conditions to coexistence of viruses

• The existence of both positive components u(x) and v(y) is possible only if the interval of non-mortality of functions $\sigma_1(x)$, $\sigma_2(y)$ is greater than the critical value

$$\xi_i^* = \frac{1}{\sqrt{\alpha_i}} \arccos\left(\sqrt{\frac{\alpha_i}{\sigma_i}}\right) \qquad i = 1, 2.$$

• The existence of positive solutions depends of the relation between the values of the coefficients $\alpha_{1,2}, \beta_{1,2}, \gamma_{1,2}$. If $\alpha_1 > \alpha_2$, then both components of the solutions are positive for

$$\beta_1 \ge \beta_2 \left(\frac{\alpha - k_1^2}{\alpha - k_2^2}\right) \quad \text{and} \quad \gamma_1 > \frac{\beta_1}{\beta_2}\gamma_2$$

Numerical simulations of virus coexistence

 $L = 12, D_1 = D_2 = \alpha_1 = \alpha_2 = 1 \ \beta_1 = 0.2, \gamma_1 = 0.1, \beta_2 = 0.1, \gamma_2 = 0.4$

Description	Analytical	Numerical	Particular	Generalization of	
of the model ● ● ● ● ●	solution ● ● ● ●	experiments	case	mortality function	university

Numerical simulations of virus coexistence

 $L = 12, D_1 = D_2 = \alpha_1 = \alpha_2 = 1, \beta_1 = 0.1, \gamma_1 = 0.1, \beta_2 = 0.1, \gamma_2 = 0.07$

Description	Analytical	Numerical	Particular	Generalization of	576-56
of the model ● ● ● ● ●	solution ● ● ● ●	experiments ● ●	case	mortality function	RUDN university

Equal coefficients

$$\alpha_1 = \alpha_2, \beta_1 = \beta_2, \gamma_1 = \gamma_2$$

- We determinate that u(x) is positive and v(y) is negative. We have not found the values of parameters for which both components of the solution are positives.
- The existence of the only positive component is defined by the length of the interval of no mortality. Here x_1 must be greater than

$$\xi_1 = \frac{1}{\sqrt{\alpha}} \arctan\left(\sqrt{\frac{\sigma_1}{\alpha} - 1}\right)$$

Generalization of the virus mortality functions

• $\sigma_1(x), \sigma_2(y)$ are a bounded non-negative sufficiently smooth functions.

Theorem. Suppose that $\sigma_1(x)$, $\sigma_2(y)$ are sufficiently smooth bounded functions such that

$$\sigma_1(x) = \begin{cases} \sigma_1 > \alpha_1, & |x| \ge x_1 \\ 0, & |x| \le x_0 \end{cases}, \qquad \sigma_2(y) = \begin{cases} \sigma_2 > \alpha_2, & |y| \ge y_1 \\ 0, & |y| \le y_0 \end{cases}$$

where $x_1 > x_0 > \frac{\pi}{2}$ and $y_1 > y_0 > \frac{\pi}{2}$. Then system of equations has positive solutions decaying at infinity.

of the model	solution	experiments	case	mortality function	RUDN
	$\bullet \bullet \bullet \bullet$	°● ●	\bullet		university

Results and their biological interpretation

- The admissible interval where virus multiplication rate is larger than its mortality rate should be sufficiently long, and the mutation rate should be small enough.
- For equals coefficients, the competition between two viruses results in the disappearance of one of them and persistence of another one.
- For different coefficients, the coexistence of virus is subject to the correlation coefficient's α , β and γ .

Thank you!

Discover the World in One University

