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Why fractionate radiotherapy?  

Fraction of cells, which survive after a single radiation dose D: 
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Why fractionate radiotherapy?  

Usually 𝛼 𝑡𝑢𝑚𝑜𝑟 > 𝛼 𝑛𝑜𝑟𝑚𝑎𝑙 , but  (𝛼/β) 
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Why fractionate radiotherapy?  

Fraction of cells, which survive after a single radiation dose D: 

4 R’s of radiotherapy: 
 

• Reoxygenation (more O2 – more cells die) 

• Redistribution of cell cycle (proliferating cells die faster) 

• Repopulation  

• Repair of sublethal damage 



Clinical fractionation schemes 

• Henares-Molina A. et al. Non-standard radiotherapy fractionations delay the time to malignant transformation  
of low-grade gliomas //Plos one. – 2017. – Т. 12. – №. 6. – С. e0178552. 



Mathematical modeling for optimization 
of radiotherapy fractionation 

ODEs 
• simple 
• analytical optimization methods 

• analytical methods become unsolvable  
under complex non-linear terms 

• cannot account for reoxygenation &  
redistribution of cell cycle 

Type  
of model 

pros cons 
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• Leder K. et al. Mathematical modeling of PDGF-driven glioblastoma reveals optimized radiation dosing schedules 
//Cell. – 2014. – Т. 156. – №. 3. – С. 603-616. 

dose, Gy 

days 
0

0,5

1

1,5

2

2,5

0 1 2 3 4 5 6

(3 in a day) (3 in a day) (2 in a day) 
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• simple 
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Type  
of model 

pros cons 

• Galochkina T., Bratus A., Pérez-García V. M. Optimal radiation fractionation for low-grade gliomas: Insights from a 
mathematical model //Mathematical biosciences. – 2015. – Т. 267. – С. 1-9. 

• Fernández-Cara E., Prouvée L. Optimal control of mathematical models for the radiotherapy of gliomas: the scalar 
case //Computational and Applied Mathematics. – 2018. – Т. 37. – №. 1. – С. 745-762. 

But they don’t 

Such works consider homogeneous and constant radiosensivity: 



Mathematical modeling for optimization 
of radiotherapy fractionation 

ODEs 

PDEs 

Agent- 
based 

• simple 
• analytical optimization methods 

• analytical methods become unsolvable  
under complex non-linear terms 

• cannot account for reoxygenation &  
redistribution of cell cycle 

• can account for reoxygenation &  
redistribution of cell cycle 

• need to develop optimization methods 

• numerical complexity does not allow 
to utilize optimization procedures 

• small number of cells is considered 

Type  
of model 

pros cons 

• can account for reoxygenation &  
redistribution of cell cycle 



What we do: 

• We present a PDE-governed mathematical model of solid tumor 
growth and treatment by fractionated RT  
that explicitly accounts for tumor cell repopulation, 
reoxygenation and redistribution of proliferative states.  

 
• With the use of a specially-developed algorithm,  

we find the optimized fractionation schemes  
for varied radiosensitivity of tumor cells under the values  
of model parameters, that correspond to different degrees  
of tumor malignancy.  

 
• The resulting schemes lead to significant expansions  

in the curative ranges of the values  
of tumor radiosensitivity parameters.  

 



The model: variables 
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The model: dynamics of cells and necrotic tissue  
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Two types  
of cell motion: 

1) random migration 

Van Roosmalen, Wies, et al.   
The Journal of clinical investigation 
125.4 (2015): 1648-1664. 



The model: dynamics of cells and necrotic tissue  

   n(x,t)– tumor cells 
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Baek, NamHuk, et al.  
Drug design, development  
and therapy 10 (2016): 2155. 
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The model: dynamics of nutrients 
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The model: radiotherapy 
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The model: radiotherapy Simulation of tumor growth and radiotherapy 
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The model: radiotherapy Simulation of tumor growth and radiotherapy 
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Optimization task 

First irradiation was performed when tumor radius reached 1 cm. 
Considered schemes consisted of 42 non-negative doses,  

administered successively at 24 h interval. 
 

Standard scheme: 30 doses of 2 Gy, delivered every weekday over six weeks: 
 
 
 

Two constraints on normal tissue damage: 
 
 
 
 

Aim: find the scheme to decrease the number of tumor cells as much as possible 
 

1 
At that, the Tumor Cure Probability increases: 



Optimization algorithm 
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Optimization algorithm 
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Model parameters 
 

 
Malignant tumor cells: 
 

• divide faster 
 

• die harder 
 

 
• move faster 

 
 
 

• induce angiogenesis 
 

 
 

 
• consume more nutrients 

 
 

• become more radiosensitive 
in quiescent state (optional) 



Standard vs. optimized fractionation schemes 
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Conclusions 

• A special algorithm is developed, aimed at finding the fractionation 
schemes that provide increased tumor cure probability  
under the constraints of maximum normal tissue damage and maximum 
fractional dose. 

 
• The resulting optimized schemes consist of two stages.  

The first stages are aimed to increase the radiosensitivity of the tumor cells, 
remaining after their end, sparing the caused normal tissue damage.  
This allows to increase the doses during the second stages and thus to  
take advantage of the obtained increased radiosensitivity.  

 
• This study represent the theoretical proof of concept that  

non-uniform radiotherapy fractionation schemes may be considerably 
more effective than the uniform ones,  
due to the time and space-dependent effects. 



Thank you  
for your attention! 

Results are published:  
Kuznetsov Maxim and Kolobov Andrey.  

"Optimization of Dose Fractionation for Radiotherapy of a Solid Tumor  
with Account of Oxygen Effect and Proliferative Heterogeneity."  

Mathematics 8.8 (2020): 1204. 


