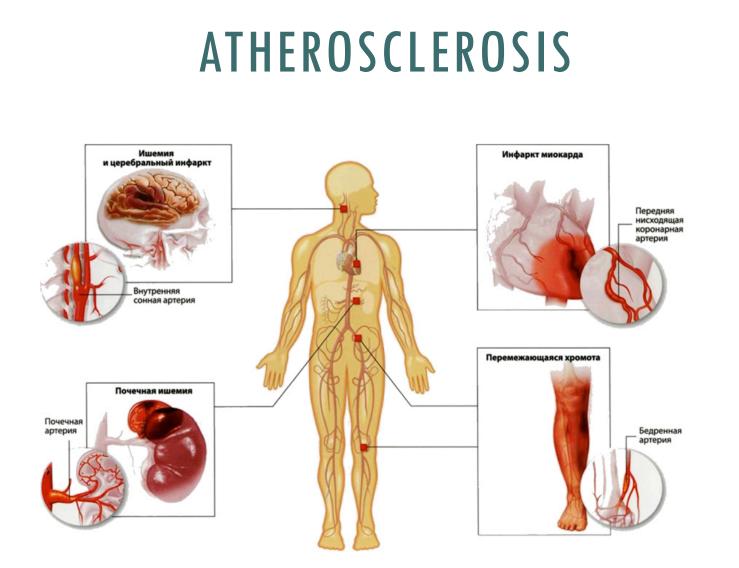


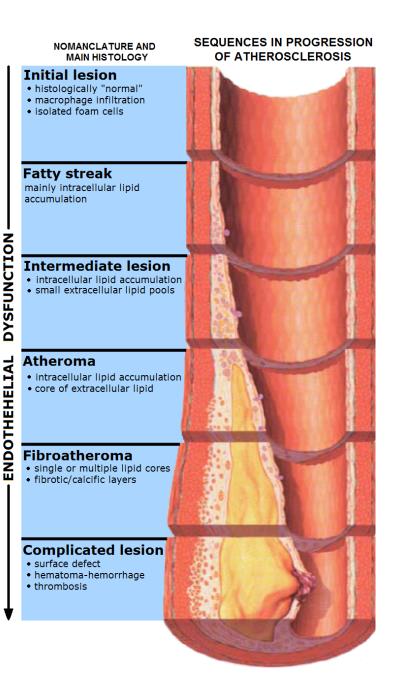
Mathematical Institute named after S.M. Nikol'skii

Model of the development of atherosclerosis and its analytical, qualitative and numerical research

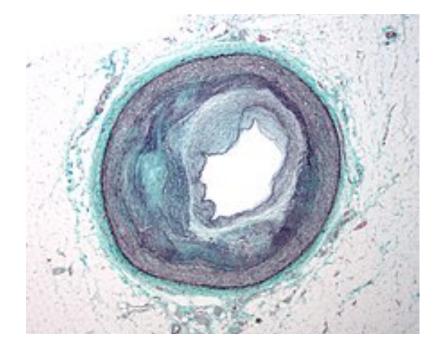
Vladimir Bezyaev, Kristina Ryumina

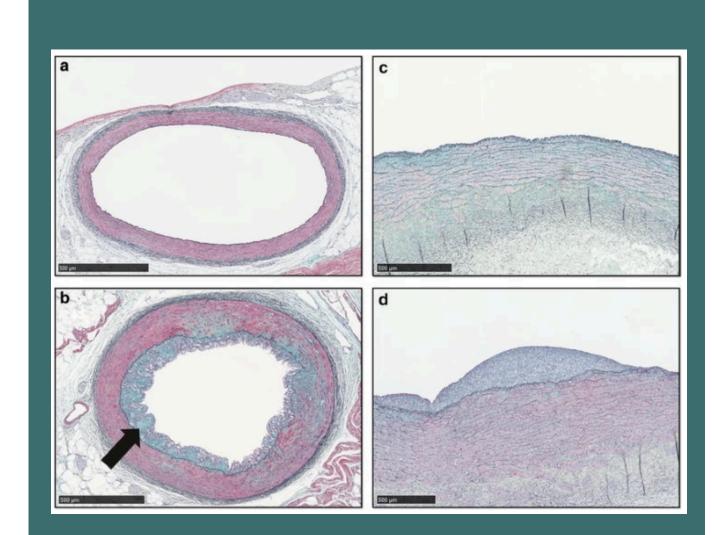
XII CONFERENCE ON MATHEMATICAL MODELS AND NUMERICAL METHODS IN BIOMATHEMATICS 2-3 November 2020


PARTICIPANTS


Sadekov Nail

RUDN, Mathematical Institute named after S.M. Nikol'skii


Volpert Vitaly

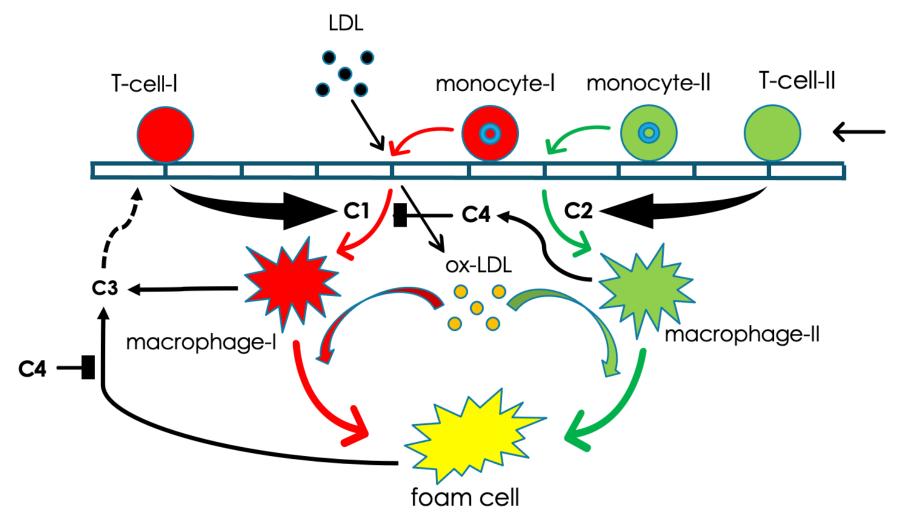

RUDN, Mathematical Institute named after S.M. Nikol'skii and CNRS, Institute Camille Jordan

CHRONIC INFLAMMATION BLOOD VESSEL WALLS

THE MODEL OF CHRONIC INFLAMMATION

We consider the model of chronic inflammation in the blood vessel walls taking into account low density lipoproteins (LDL), high density lipoproteins (HDL), free radicals, various cell types (monocytes, macrophages, T-lymphocytes, foam cells), pro- and anti-inflammatory cytokines. Endothelial cells and smooth muscle cells are not considered explicitly in the model but their action is taken into account indirectly. Numerous cytokines participating in atherogenesis are not considered individually but grouped in pro-inflammatory and anti-inflammatory parts.

Bezyaev V., Sadekov N. and Volpert V. A model of chronic inflammation in atherosclerosis, ITM Web of Conferences 31 04002, 2020


MODEL VARIABLES: CONCENTRATION AND DENSITY IN UNITS OF G/CM3

L	concentration of LDL	Tl	density of proinflammatory 1-helpers cells
н	concentration of HDL	T2	density of anti-inflammatory 2-helper cells
Lox	concentration of ox-LDL	C1	concentration of 1-helpers of cytokines
r	concentration of free radicals	C2	concentration of 2-helpers of cytokines
A1	density of proinflammatory monocytes	С3	concentration of pro-inflammatory agents
A2	density of anti-inflammatory monocytes	C4	concentration of anti-inflammatory agents
MI	density of pro-inflammatory macrophages	F	density of foam cells
M2	density of anti-inflammatory macrophages		

THE PARAMETER USED OF THE MODEL

Para meter	Description	Value	Para meter	Description	Value
σ_{L}	Rate of LDL penetration through the vessel wall	$1.0 cm^{-1}$	k _{Lox}	Ox-LDL saturation for production of MCP-1	$0.5 g cm^{-3}$
L ₀	Concentration of LDL in the blood	$7 * 10^{-4} g^{-1} cm^3 day^{-1}$	λ_{PA_1}	Rate of A_1 monocytes penetration though the vessel wall	$0.2 cm^{-1}$
k _L	Reaction rate of LDL and radical	$2.35 * 10^{-4} g^{-1} cm^3 day^{-1}$	A_1^0	Density of A_1 monocytes in blood	$5 * 10^{-5} gcm^{-3}$
$\sigma_{\rm H}$	Rate of HDL penetration through the vessel wall	$1.0 cm^{-1}$	r ₀	Influx of radical into intima	$0.26 g cm^{-3} day^{-1}$
H ₀	Concentration of HDL in the blood	$4 * 10^{-4} g^{-1} cm^3 day^{-1}$	d _{A1}	Death rate of A_1 monocytes	0.015 <i>day</i> ⁻¹
k _H	Reaction rate of HDL and radical	$5.29 * 10^{-6} g^{-1} cm^3 day^{-1}$	d _{T1}	Death rate of T_1 -cells	0.33 <i>day</i> ⁻¹
$\lambda_{L_{ox}M_1}$	Rate of ox-LDL ingestion by M_1 macrophages	144.5	d _F	Death rate of foam cells	$0.03 day^{-1}$

SCHEMATIC NETWORK OF ATHEROSCLEROSIS

COMPLETE MODEL

• LDL

$$\frac{dL}{dt} = \sigma_L(L_0 - L) - k_L r L,$$

• HDL

$$\frac{d\mathbf{H}}{d\mathbf{t}} = \boldsymbol{\sigma}_{\mathbf{H}}(\mathbf{H}_{\mathbf{0}} - \mathbf{H}) - \mathbf{k}_{\mathbf{H}}\mathbf{r}\mathbf{H},$$

• ox-LDL

$$\frac{dL_{ox}}{dt} = k_L r L - \lambda_{L_{ox}M_1} \frac{L_{ox}}{k_{L_{ox}} + L_{ox}} M_1 - \lambda_{L_{ox}M_2} \frac{L_{ox}}{k_{L_{ox}} + L_{ox}} M_2 ,$$

• free radical

$$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}\mathbf{t}} = \mathbf{r}_0 + \mathbf{r}_1 \mathbf{M}_1 - \mathbf{r}(\mathbf{k}_L \mathbf{L} + \mathbf{k}_H \mathbf{H}) \text{,}$$

• monocytes

$$\frac{dA_1}{dt} = \lambda_{PA_1} \frac{P}{k_{1P} + k_{2P}P} A_1^0 - \lambda_{C_1A_1} \frac{C_1}{k_{C_1} + C_1 + k_4C_4} A_1 - d_{A_1}A_1,$$

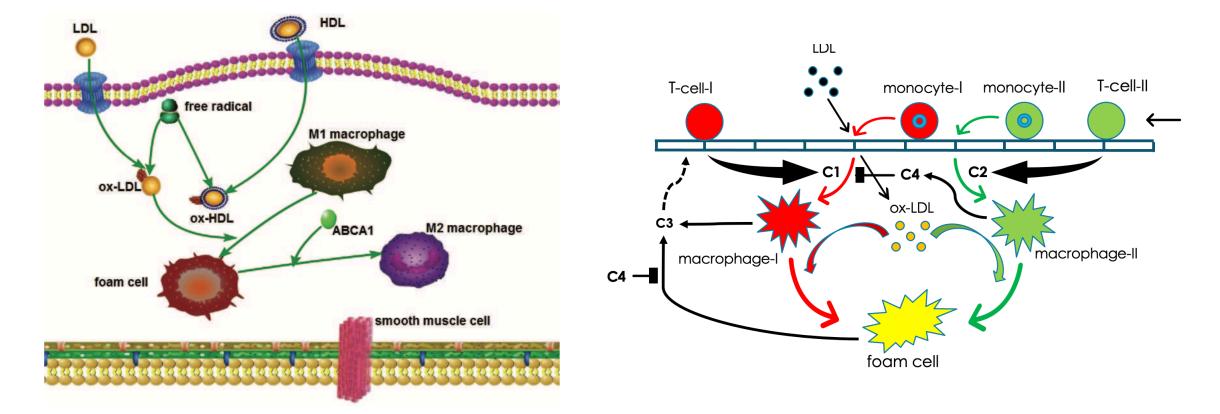
$$\frac{dA_2}{dt} = \lambda_{PA_2} \frac{P}{k_{1P} + k_{2P}P} A_2^0 - \lambda_{C_2A_2} \frac{C_2}{k_{C_2} + C_2} A_2 - d_{A_2}A_2 ,$$

macrophages

$$\frac{dM_1}{dt} = \lambda_{C_1A_1} \frac{C_1}{k_{C_1}+C_1+k_4C_4} A_1 - \lambda_{L_{ox}M_1} \frac{L_{ox}}{k_{L_{ox}}+L_{ox}} M_1 - d_{M_1}M_1,$$

$$rac{dM_2}{dt} = \lambda_{C_2A_2} rac{C_2}{k_{C_2}+C_2} A_2 - \lambda_{L_{ox}M_2} rac{L_{ox}}{k_{L_{ox}}+L_{ox}} M_2 - d_{M_2}M_2$$
 ,

• T-cells


$$\frac{dT_1}{dt} = \lambda_{PT_1} \frac{P}{k_{1P} + k_{2P} P} T_1^0 - d_{T_1} T_1,$$
$$\frac{dT_2}{dt} = \lambda_{PT_2} \frac{P}{k_{1P} + k_{2P} P} T_2^0 - d_{T_2} T_2,$$

- T-helper cytokines $\frac{dC_1}{dt} = \lambda_{C_1}T_1 - k_{C_1A_1}C_1A_1 - d_{C_1}C_1,$ $\frac{dC_2}{dt} = \lambda_{C_2}T_2 - k_{C_2A_2}C_2A_2 - d_{C_2}C_2,$
- pro-inflammatory agents $\frac{dC_3}{dt} = \lambda_{C_4M_1} \frac{1}{k_{C_4}+C_4} M_1 - \lambda_{C_4F} \frac{1}{k_{C_4}+C_4} F - d_{C_3}C_3,$
- anti-inflammatory agents $rac{dC_4}{dt} = \lambda_{C_4} M_2 d_{C_4} C_4$,

foam cells

$$\frac{dF}{dt} = \lambda_{L_{ox}M_1} \frac{L_{ox}}{k_{L_{ox}} + L_{ox}} M_1 - \lambda_{L_{ox}M_2} \frac{L_{ox}}{k_{L_{ox}} + L_{ox}} M_2 - d_F F.$$

COMPARISON OF MODELS

Friedman A., Hao W. A mathematical model of atherosclerosis with reverse cholesterol transport and associated risk factors, Bulletin of Mathematical Biology, 77, Issue 5, 2015, 758–781.

VARIABLE COMPARISON

L	LDL	Q	MMPs
Н	HDL	Qr	TIMP
L _{ox}	ox-LDL	S	SMCs
r	free radical	ρ	ECM
Р	MCP-1	F	Foam cells
Iγ	IFN-γ	Т	T cells
I ₁₂	IL-12	M ₁	pro-inflammatory macrophages
G	PDGF	M ₂	anti-inflammatory macrophages

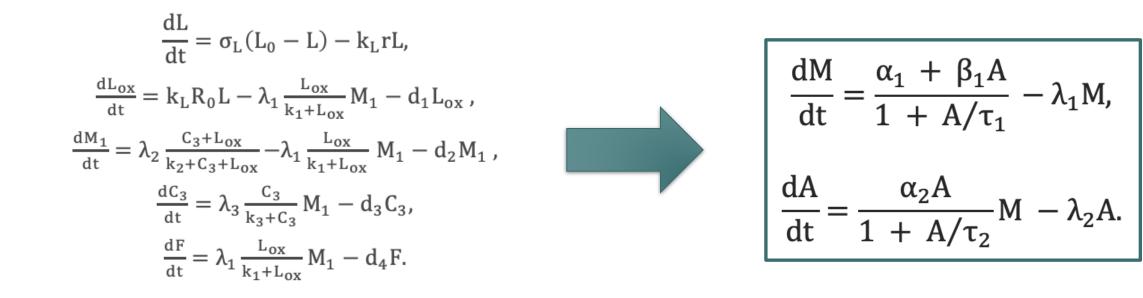
L	LDL	Cl	1-helpers of cytokines
н	HDL	C2	2-helpers of cytokines
Lox	ox-LDL	C3	pro-inflammatory agents
r	free radicals	C4	anti-inflammatory agents
A1	pro-inflammatory monocytes	TI	pro-inflammatory 1- helpers cells
A2	anti-inflammatory monocytes	T2	anti-inflammatory 2- helper cells
M1	pro-inflammatory macrophages	F	foam cells
M2	anti-inflammatory macrophages		

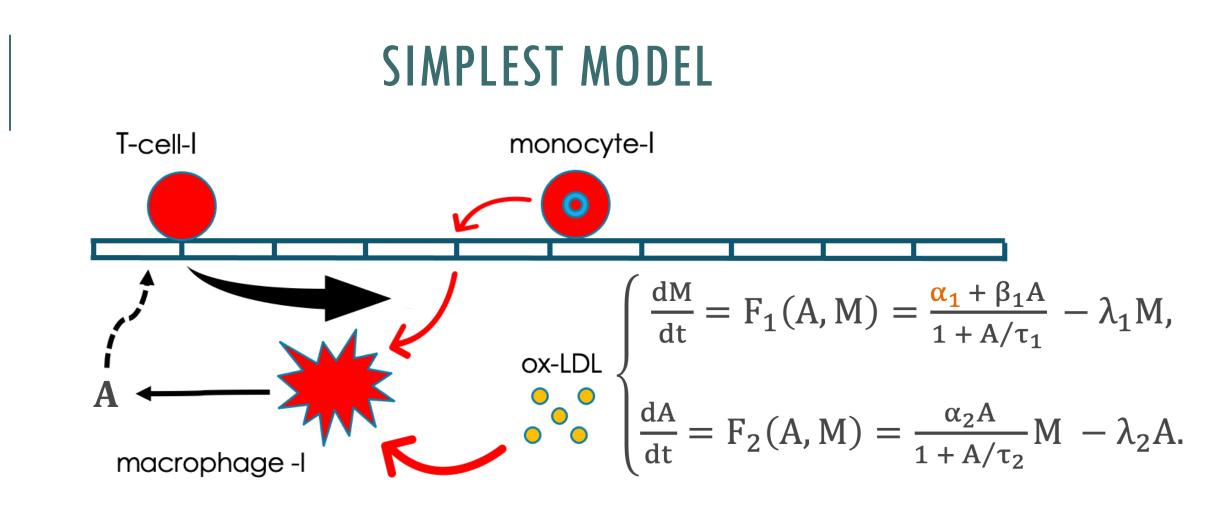
Bezyaev V., Sadekov N. and Volpert V.

Friedman A., Hao W. A

REDUCTION $15 \rightarrow 5$

$$\begin{split} \frac{dL}{dt} &= \sigma_L(L_0 - L) - k_L r L, \\ \frac{dH}{dt} &= \sigma_H(H_0 - H) - k_H r H, \\ \frac{dL_{ox}}{dt} &= k_L r L - \lambda_{Lox} M_1 \frac{L_{ox}}{k_{Lox} + L_{ox}} M_1 - \lambda_{Lox} M_2 \frac{L_{ox}}{k_{Lox} + L_{ox}} M_2 , \\ \frac{dr}{dt} &= r_0 + r_1 M_1 - r(k_L L + k_H H) , \\ \frac{dA_1}{dt} &= \lambda_{PA_1} \frac{P}{k_1 p + k_2 p P} A_1^0 - \lambda_{C_1 A_1} \frac{C_1}{k_{C_1} + C_1 + k_4 C_4} A_1 - d_{A_1} A_1 , \\ \frac{dA_2}{dt} &= \lambda_{PA_2} \frac{P}{k_1 p + k_2 p P} A_2^0 - \lambda_{C_2 A_2} \frac{C_2}{k_{C_2} + C_2} A_2 - d_{A_2} A_2 , \\ \\ \frac{dM_1}{dt} &= \lambda_{C_1 A_1} \frac{C_1}{k_{C_1} + C_1 + k_4 C_4} A_1 - \lambda_{Lox} M_1 \frac{L_{ox}}{k_{Lox} + L_{ox}} M_1 - d_{M_1} M_1 , \\ \\ \frac{dM_2}{dt} &= \lambda_{C_2 A_2} \frac{C_2}{k_{C_2} + C_2} A_2 - \lambda_{Lox} M_2 \frac{L_{ox}}{k_{Lox} + L_{ox}} M_2 - d_{M_2} M_2 , \\ \\ \\ \frac{dT_1}{dt} &= \lambda_{PT_1} \frac{P}{k_1 p + k_2 p P} T_1^0 - d_{T_1} T_1 , \\ \\ \\ \frac{dT_2}{dt} &= \lambda_{C_2} T_2 - k_{C_2 A_2} C_2 A_2 - d_{C_2} C_2 , \\ \\ \\ \frac{dC_1}{dt} &= \lambda_{C_4 M_1} \frac{1}{k_{C_4} + C_4} M_1 - \lambda_{C_4 F} \frac{1}{k_{C_4} + C_4} F - d_{C_3} C_3 , \\ \\ \\ \\ \frac{dC_3}{dt} &= \lambda_{Lox} M_1 \frac{L_{ox}}{k_{Lox} + L_{ox}} M_1 - \lambda_{Lox} M_2 \frac{L_{ox}}{k_{Lox} + L_{ox}} M_2 - d_F F. \end{split}$$

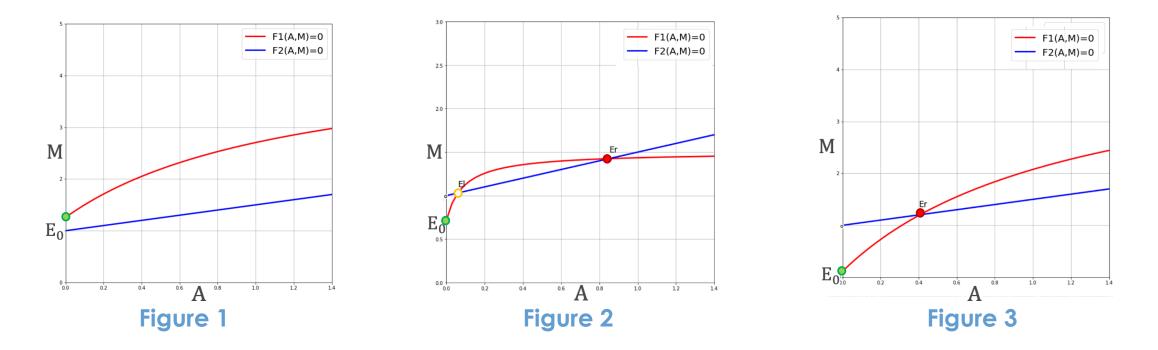

Let us:
$$H = A_2 = M_2 = T_2 = C_2 = C_4 = 0$$
,
 $A_1 = A_1^0 = \text{const}, \ C_1 >> 1$.
Redesignation : $r = R_0$, $\lambda_1 = \lambda_{M_1L_{0X}}, \lambda_2 = \lambda_{C_1A_1}$,
 $\lambda_3 = \lambda_{C_4M_1}, k_1 = k_{L_{0X}}, k_2 = k_{C_1}, k_3 = k_{C_4}$,
 $d_1 = d_{L_{0X}}, d_2 = d_{M_1}, d_3 = d_{C_3}, d_4 = d_F$
 dL


$$\begin{split} \frac{dL}{dt} &= \sigma_L (L_0 - L) - k_L R_0 L, \\ \frac{dL_{ox}}{dt} &= k_L R_0 L - \lambda_1 \frac{L_{ox}}{k_1 + L_{ox}} M_1 - d_1 L_{ox}, \\ \frac{dM_1}{dt} &= \lambda_2 \frac{C_3 + L_{ox}}{k_2 + C_3 + L_{ox}} - \lambda_1 \frac{L_{ox}}{k_1 + L_{ox}} M_1 - d_2 M_1, \\ \frac{dC_3}{dt} &= \lambda_3 \frac{C_3}{k_3 + C_3} M_1 - d_3 C_3, \\ \frac{dF}{dt} &= \lambda_1 \frac{L_{ox}}{k_1 + L_{ox}} M_1 - d_4 F. \end{split}$$

REDUCTION $5 \rightarrow 2$

Let us: $\lambda_1 = 0$.

Redesignation :
$$M_1 = M$$
, $C_3 = A$, $\alpha_1 = \lambda_2 L_{ox}$, $\beta_1 = \lambda_2$, $\tau_1 = k_1 + L_{ox}$,
 $d_1 = \lambda_1$, $\alpha_2 = \lambda_3$, $\tau_2 = k_3$, $d_2 = \lambda_2$.


M– macrophages, A – pro-inflammatory agents α_1 – Concentration of LDL in the blood

THREE PHYSIOLOGICAL CONDITIONS DEPENDING ON THE CHOLESTEROL LEVEL

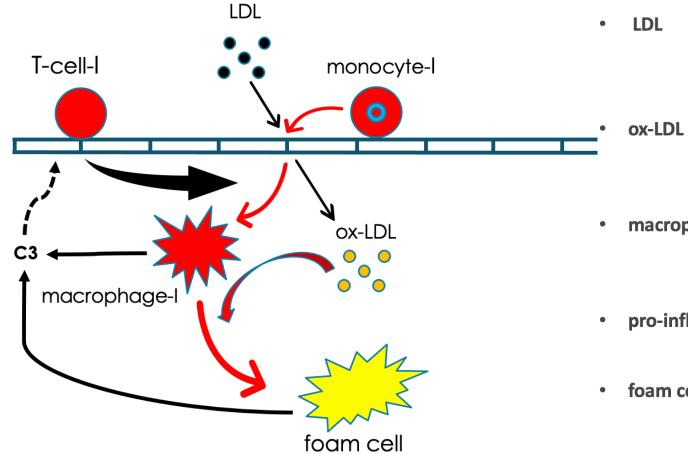

Figure 1 α_1 small, disease free (the monostable case)

Figure 2 α_1 is intermediate, atherosclerosis can develop under certain conditions

Figure 3 α_1 large, atherosclerosis necessarily develops (bistable case)

INFLAMMATORY RESPONSE MODEL

$$\frac{dL}{dt} = \sigma_L (L_0 - L) - k_L R_0 L ,$$

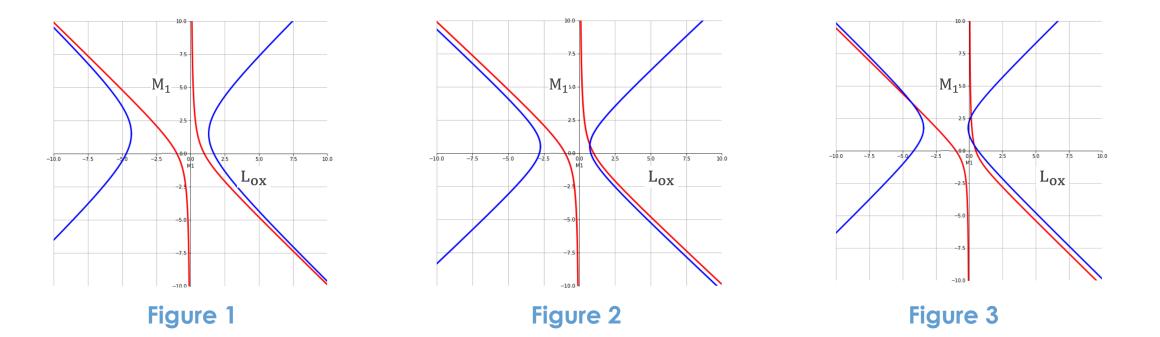
$$\frac{dL_{ox}}{dt} = k_L R_0 L - \lambda_1 \frac{L_{ox}}{k_1 + L_{ox}} M_1 - d_1 L_{ox}$$
 ,

macrophages

$$\frac{dM_1}{dt} = \lambda_2 \frac{C_3 + L_{ox}}{k_2 + C_3 + L_{ox}} - \lambda_1 \frac{L_{ox}}{k_1 + L_{ox}} \ M_1 - d_2 M_1 \text{ ,}$$

pro-inflammatory agents

$$\label{eq:c3} \frac{\text{d}\text{C}_3}{\text{d}\text{t}} = \lambda_3 \frac{\text{C}_3}{\text{k}_3 + \text{C}_3} \, \text{M}_1 - \text{d}_3 \text{C}_3\text{,}$$


foam cells

$$\frac{\mathrm{d}F}{\mathrm{d}t} = \lambda_1 \frac{\mathrm{L}_{\mathrm{ox}}}{\mathrm{k}_1 + \mathrm{L}_{\mathrm{ox}}} \mathbf{M}_1 - \mathbf{d}_4 \mathbf{F}.$$

THREE PHYSIOLOGICAL CONDITIONS DEPENDING ON THE CHOLESTEROL LEVEL

Figure 1 L_0 small, disease free.

Figure 2 L_0 is intermediate, atherosclerosis can develop under certain conditions (the monostable case). Figure 3 L_0 large, atherosclerosis necessarily develops (bistable case).

COMPLETE MODEL ANALYSIS PLAN

I would like to get the obtained results for a full-fledged model. We are trying to do this with the parameter continuation method. We will implement this method in programs such as:

- Python is a programming language.

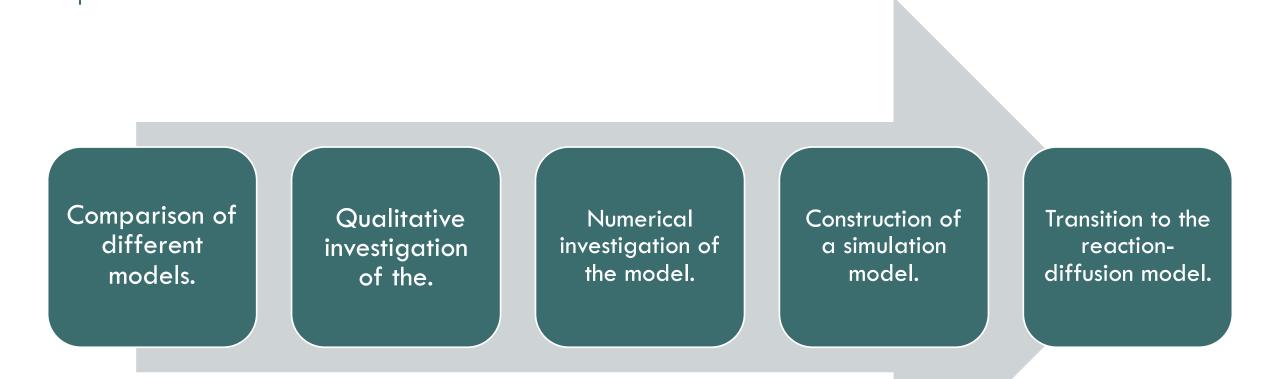
- XPPAUT is a tool for simulating, animating, and analyzing dynamical systems.

CONCLUSIONS

We present a mathematical model of atherosclerosis development for the concentrations of cells and cytokines of innate immunity.

The stationary points and their stability for reduced kinetic systems of two and five ODEs are investigated.

Existence and stability of the equilibria of this model, depending on the level of cholesterol in blood and on other parameters, determine the development of atherosclerosis.


The relationship of the obtained results is analyzed, and their biological interpretation is given.

CONCLUSIONS

PERSPECTIVES

BIBLIOGRAPHY

- 1. Orekhov A.N. Atherosclerosis, Palmarium Academic Publishing, 2013.
- 2. Process, Math. Model. Nat. Phenom. Vol. 2, No. 2, 2007, 126-141.
- 3. Bezyaev V., Sadekov N. and Volpert V. A model of chronic inflammation in atherosclerosis, ITM Web of Conferences 31 04002, 2020.
- 4. Friedman A., Hao W. A mathematical model of atherosclerosis with reverse cholesterol transport and associated risk factors, Bulletin of Mathematical Biology, 77, Issue 5, 2015, 758–781.

THANK YOU FOR ATTENTION