Microtubule segmentation on photofluorescent microphotography

Konstantin Novikov, INM RAS, Moscow, Russia

Image segmentation

Segmentation is the process of partitioning an image into multiple segments.

Microtubule network

Functions:

- intracellular transport
- cell structure maintaining
- cell division
- cilia and flagella functioning

Motivation

Modeling of microtubule-assosiated diseases and intracellular drugs

Microtubule segmentation specificity

1. Microtubules are thinner then they look on photofluorescent images

Photo

Real width

Microtubule segmentation specificity

1. Microtubules are thinner then they look on photofluorescent images

Photo

Microtubule segmentation special aspects

2. Each microtubule is a separate structure

Binary mask

Separate mask for Each microtubule

- 1. Preliminary segmentation
- 2. Graph construction
- 3. Separate segment segmentation
- 4. Segment combining

Getting binary mask

- 1. Preliminary segmentation
- 2. Graph construction
- 3. Separate segment segmentation
- 4. Segment combining

Transforming the binary mask into a graph

- 1. Preliminary segmentation
- 2. Graph construction
- 3. Separate segment segmentation
- 4. Segment combining

Using graph path search algorithms we find separate segments of microtubules

- 1. Preliminary segmentation
- 2. Graph construction
- 3. Separate segment segmentation
- 4. Segment combining

Combining of separate microtubule segments into one microtubule

Frangi Vesselness filter

Tube model

For an ideal bright tube Hessian eigenvalues $\lambda_1 \lambda_2 \lambda_3$ and corresponding eigenvectors e_1, e_2, e_3 have the following properties:

- $|\lambda_1| \ll |\lambda_2| \leq |\lambda_3|$
- *e*₁ directs along tube centerline
- e_2 and e_3 span the crosssection plane

[Frangi A. [et al.] Multiscale vessel enhancement filtering. Medical Image Computing and Computer-Assisted Intervention – MICCAI'98 – 1998. – P. 130-137.]

1. Preliminary segmentation

[Frangi A. [et al.] Multiscale vessel enhancement filtering. Medical Image Computing and Computer-Assisted Intervention – MICCAI'98 – 1998. – P. 130-137.]

2. Graph construction

- Nodes = mask pixels
- Edges connect neighboring nodes (maximum 8 nodes)

Empirical assumptions:

1. Microtubule curvature is changing slowly

2. Microtubules are more likely to be straight than curved

Main idea: use graph path search algorithms to find minimal cost paths, where edge cost is assigned using empirical assumptions

- $y=ax^3+bx^2+cx+d$
- Edge cost *l*+*w*(*|a|*+*|b|*)

Results

[Hadjidemetriou]

Algorithm results

[Hadjidemetriou S. *[et al.]* Segmentation and 3D reconstruction of microtubules in total internal reflection fluorescence microscopy (TIRFM) // Med Image Comput Comput Assist Interv.– V. 8, Pt 1 – 2005. – P. 761-769.]

Results

Algorithm results

Original image

Results

[Hadjidemetriou]

Algorithm result

[Hadjidemetriou S. [*et al.*] Segmentation and 3D reconstruction of microtubules in total internal reflection fluorescence microscopy (TIRFM) // Med Image Comput Comput Assist Interv.– V. 8, Pt 1 – 2005. – P. 761-769.]

Direction misatribution

Direction misatribution

MotionTracking [http://motiontracking.mpi-cbg.de]

Image 512 x 280 x 1

Plus and minus-end dynein movements

Control

dnch1 knockdown

Misatribution model

$$\begin{split} m_{+}^{control} &= (1-\alpha)n_{+}^{control} + \alpha n_{-}^{control} \\ m_{-}^{control} &= (1-\alpha)n_{-}^{control} + \alpha n_{+}^{control} \\ m_{+}^{knockdown} &= (1-\alpha)n_{+}^{knockdown} + \alpha n_{-}^{knockdown} \\ m_{-}^{knockdown} &= (1-\alpha)n_{-}^{knockdown} + \alpha n_{+}^{knockdown} \\ \frac{n_{+}^{control}}{n_{+}^{control}} &= \frac{n_{+}^{knockdown} + n_{-}^{knockdown} / \tau}{n_{+}^{knockdown} + n_{-}^{knockdown} / \tau} \end{split}$$

- $m_{+/-}$ apparent number of plus/minus-end directed movements
- $n_{+/-}$ true number of plus/minus-end directed movements
- τ knockdown effectiveness
- α misatribution coefficient

Misatribution model results

