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Spiking Neural Networks

Neurons generate binary signals and are trained according to biomimetic rules 
(Hebbian learning). Networks have a sparse structure.



Currently simulation of neurons is descriptive and assumes 
neurons as passive transmitters 

Even the unicellulars act and learn in the complex world using 
limited sensing and reasoning

Simulation of conditional learning in
unicellulars based on phosphorylation
cycle (Fernando et al, 2008)

Motivation



Motivation
Neurons are very complex cells and might be very big and compartmentalized

The complexity of even a single neuron. Credit: Mariana Ruiz Villarreal, Wikipedia Commons



Motivation

• Simulation of neurons often does not take into account an internal 
cellular adaptability (limited self-organizing and biological plausibility)

• Intrinsically motivated models might be the solution to create real 
world applications

• Inclusion of reward into the plasticity rule leads to emergence of self-
organized adaptive behavior [Kappel et al, 2017; Zenke, F. and Ganguli, 
S., 2018]

Neuronal intracellular homeostasis 
model 

[Tsitolovsky, 2005]

We may link the intrinsic motivation of 
neural cells with the synaptic plasticity 
rule and  have intrinsically motivated 
distributed RL approach



Adaptive correction of neuronal activity

Some important processes: 

• synaptic plasticity, including homeostatic, [Turrigiano, 2008]

• regulation of intracellular dynamics of transport and secretion of 
neurotransmitter receptors, [Antunes and Simoes-de-Souza, 2018], 
[Hanus et al, 2014], [Kneussel and Hausrat, 2016]

• correction of the cell membrane excitability threshold, [Franklin et al, 
1992]

• adaptive functioning intracellular regulatory networks. [Szita et al, 2006]



Synaptic plasticity
We consider three processes of synaptic plasticity, depending on neurotransmitter receptors: 
⚫ spike-time dependent plasticity (STDP) (positive feedback loop), 
⚫ activity-dependent receptor degradation (ADRD) (negative feedback loop)  
⚫ synaptic scaling (SS) (heterosynaptic homeostatic stabilization).



Neurotransmitter receptors: synthesis, transport and 
storage

Neurotransmitter receptors (here and below Pw) are the special proteins, responsible for 
signal transmission in chemical synapses.

The learning processes depend on the dynamics of the storage of neurotransmitter 
receptors. Together with synaptic plasticity, they cause a change in the strength of the 
synaptic interconnections between nerve cells. These processes can be defined as 
”dendritic” part of the learning in the neuron.



Complex cellular networks as reservoir-computing

Genetic regulation is a non-linear dynamic information processing that occurs in the
network structure and has a complex interaction graph consisting of the work of genetic
regulatory networks (GRN) and protein interactions. In general, all this can be called
complex cellular networks (CCN). CCN was modeled using echo state networks (ESN).

For a predictive correction of this level of 
excitability, we can assume the action of 
CCN, as ESN in the task of reinforcement 
learning.

Modeling of genetic regulatory networks of 
cells using ESN has been proposed in [Szita 

et al, 2006]. 

We propose to use the ESN for the creation 
of an adapted Q-learning system for 
dynamic optimization of neuron 
parameters.

Level of the secretion of neurotransmitter 
receptors (∆Pwglobal) were controlled by 
ESN giving three options of actions: to 
decrease, increase and leave unchanged 
∆Pwglobal .



We combine:

⚫ the model of synaptic plasticity, including STDP, synaptic scaling and degradation 

components, 

⚫ activity-dependent regulation of intracellular dynamics of transport and 

secretion of neurotransmitter receptors, 

⚫ the reservoir-computing paradigm for predictive regulation of these parameters.

Model of a homeostatic neuron with predictive activity 
correction



Model of a homeostatic neuron with predictive activity 
correction

Let there be a neuron consisting of soma, n dendritic compartments, each of which collects 
the signal from the m synapses. The excitatory postsynaptic potential (EPSP), received by 
the dendrite n through the synapse m, is expressed in terms of the equation: 



Model of a homeostatic neuron with predictive activity 
correction

Internal values controlled by neuronal ESN reinforcement learning

Intraneural ESN-network controls Pwsoma during the Q-learning, thus 
constraining the growth of synaptic weights.

Neuron is trying to optimize an internal calcium level Csoma

State Pwdendrite , Pwsoma , Csoma , Cdendrite

Actions Up/Down of Pwsoma secretion

Q-values Divergence from Coptimal level 



Three processes of synaptic plasticity: 
⚫ spike-time dependent plasticity (STDP) (positive feedback loop),
⚫ activity-dependent receptor degradation (ADRD) (negative feedback loop),
⚫ synaptic scaling (SS) (heterosynaptic homeostatic stabilization).

Weights can only be increased if the storage of neurotransmitters receptors Pwsoma has 
enough free molecules

Model of a homeostatic neuron with predictive activity 
correction



Functionally defined Pw dynamics
Low frequency target High frequency target

In all experiments, the operation of a 
neuron was compared under conditions of 
uniform input (probability 0.1) and the 
presence of sections with high-frequency 
random signals (probability 0.5) on steps 
600-1000 and 1200-2000

Pwsoma(t+1) = Pwsoma(t) + (1 - tanh(Csoma(t))

In case of functionally defined Pw, 
its dynamics was opposite to Calcium level



Functionally defined Pw dynamics
Low frequency target High frequency target

Csoma

Pwsoma

Wact

Wpass

Spikes



ESN controlled Pw dynamics

Low frequency target High frequency target

ESN
train
error



ESN controlled Pw dynamics

Csoma

Pwsoma

Wact

Wpass

Low frequency target High frequency target



Correlated signals

On steps 200-400 and 1200-1400 neuron has correlated inputs (generated by 
stochastic process of common nature). Coincident signals were also delivered as 
before.



Correlated signals

Correlated signals led to the reliable spiking output. While coincident frequent 
signals still were blocked  (note steps 600-1000, 1200-2000). 



Conclusions

• A neuron model, including synaptic plasticity limited by the level of supply  of 
neurotransmitter receptors was constructed.

• It was shown that, a neuron can selectively respond to certain frequencies of 
input signals depending on the mode of receptor production. 

• Especially important feature of model that neuron with low-frequency target 
filters frequent coincident input, while reacting to correlated signals.

• Neurons of this model are suitable for creating spiking neural networks and can 
be used for unsupervised training tasks even on modern neuromorphic hardware 
(IBM TrueNorth).

• Python module based on common PyTorch framework was developed. It allows 
GPU accelerated network simulations and may be efficiently scaled to multiple 
nodes.



HPC GPU resources at CC FEB RAS

Presented work was performed using the resources of shared resource facility 

Data Center of FEB RAS

We also offer free resources to any Russian government funded institutions!

IBM Power nodes with GPU acceleration:

2 Power8 CPU (160 threads), 2 Tesla P100 GPU, 256 GB RAM

each node has ≈ 8 Tflops speed (Linpack)

Software: DL: TensorFlow, PyTorch, Cafee etc.; Scientific packages: ESSL, 

GAMESS-US, ABINIT, Quantum Espresso; CUDA OpenMP, OpenCL, OpenACC

Apply at ckp.ccfebras.ru
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