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Highlights

The microtubule is modeled as a macroobject presenting a
system of bound tubulins.
Frequencies of the waves along the microtubule axis, along helix
and anti-helix directions have been calculated.
Dipole-dipole interaction impact on frequency values has been
investigated.
Three different wave polarization directions have been considered.
Calculations have been performed for microtubules immersed in a
viscous environment.
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Microtubule

Structure of a microtubule. The ring shape depicts a microtubule in
cross-section, showing the 13 protofilaments surrounding a hollow
center. Microtubules are an important component of a cell
cytoskeleton, including that of neurons.
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Cytoskeleton

Components of the
eukaryotic cytoskeleton.
Actin filaments are
shown in red,
microtubules are in
green, and the nuclei
are in blue. The
cystoskeleton provides
the cell with an inner
framework and enables
it to move and change
shape.
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Motivation

Nowadays, there exists a supposition that
microtubules are a system operating similarly
to a kind of onboard computer of the cell,
whose work is based on quantum calculations.
However, this problem has not yet possessed
an unambiguous solution since as a rule
biological systems are considered to be too
warm, wet and noisy for quantum processes to
take place in them. However microtubules can
have properties which allow them to avoid
decoherence, thus depending functionally on
quantum processes. In this connection, a
microtubule can be presented as a
macrosystem interacting with microobjects that
are of quantum nature.
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Motivation

Elementary cell of
hexagonal microtubule
lattice.

Thus, investigating the role of quantum effects
in microtubules in this case calls for building a
model of a microtubule as a macroobject in the
first place, whose mechanical properties are to
be further investigated on the base of
approaches thoroughly considering the
influence of some factors, the most important
of which are dipole-dipole interaction of
tubulins and the viscosity of intracellular
environment. Besides, the investigation should
be conducted with the hexagonal
two-dimensional microtubule structure and its
anisotropic properties taken into consideration.
At present, there are no models, in which all of
these factors would be determined with a
precision required for this.
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Model: Elastic interaction

A microtubule lattice
section.

The expression for the force acting on the
central node from the neighboring nodes sides
is as follows

Fel
n,m = κ1

(
e1 · (un+1,m − 2un,m + un−1,m)

)
e1 +

+κ2
(
e2 · (un,m+1 − 2un,m + un,m−1)

)
e2 +

+κ3
(
e3 · (un−1,m+1 − 2un,m + un+1,m−1)

)
e3,

with un,m being the deviation of an (n,m) lattice
node from the state of equilibrium; the unit
vectors e1,e2,e3 being directed from the node
(0,0) to the nodes (1,0), (0,1), (−1,1);
κ1,κ2,κ3 being the elastic constants between
(0,0) and (1,0), (0,1), (−1,1) lattice nodes.
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Model: Elastic interaction

Wavelike displacement of tubulin dimers has the form of

un,m(t) = u0,0(0)e−iωteik·rn,m =

= u0,0(0)e−iωtei(k1r1
n,m+k2r2

n,m) =

= u0,0(0)e−iωtei(k1na+k2mb), (1)

with u0,0 is a vector amplitude, ω is a frequency, and k is a
two-dimensional wave vector with a components k1 and k2.
According to Newton’s second law and with regard for (1)

Fel
n,m = m0

d2un,m

dt2 = −m0ω
2un,m, (2)
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Model: Elastic interaction

Solving the system of equations (2), we obtain an expression for the
frequency

ω2 =
1
2

{
ω2

1 + ω2
2 + ω2

3 ±
[
ω4

1 + ω4
2 + ω4

3+

+2ω2
1ω

2
2 cos(2α12) + 2ω2

2ω
2
3 cos(2α23) + 2ω2

3ω
2
1 cos(2α13)

]1/2}
,

with ω2
1, ω2

2, ω2
3 are determined by the equalities

ω2
1 = 4

κ1

m0
sin2

(
k1a
2

)
,

ω2
2 = 4

κ2

m0
sin2

(
k2b
2

)
,

ω2
3 = 4

κ3

m0
sin2

(
k1a− k2b

2

)
.
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Model: Transverse lattice oscillations

Hexagonal lattice node
transverse oscillations.

Forces acting on a lattice node, with
transverse oscillations occurring.

Similarly, we obtain an expression for the frequency for the transverse
vibrations of the microtubule lattice

(ωel
⊥)

2 =
T1

aκ1
ω2

1 +
T2

bκ2
ω2

2 +
T3

cκ3
ω2

3

with T1, T2, T3 are tension forces along helix, protofilament, anti-helix
directions respectively.
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Model: Viscosity impact

We consider viscosity supposing that the viscous friction force Fvis
n,m

acting on (n,m) node is directly proportional to the velocity

Fvis
n,m = −γu̇n,m, (3)

with γ being the damping coefficient. We write down Newton’s second
law with regard for viscosity

m0ün,m = Fel
n,m + (Fel

n,m)
⊥ + Fvis

n,m. (4)

Let us suggest that the viscosity impact on the microtubule results in
the damped oscillations of the lattice nodes from law

un,m(t) = vn,m(t)e
− γ

2m0
t
, (5)

with the oscillations amplitude vn,m(t) depending on time

vn,m(t) = vn,m(0)e−iωt . (6)
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Model: Viscosity impact

Solving the systems of equations (4) under assumptions (5), (6), we
obtain expressions for the squared frequency with regard for elastic
oscillations in the plane of the lattice and viscosity

(ωel,vis
1,2 )2 =

=
−
(

f el
11 + f el

22 +
γ2

2m0

)
±
√

(f el
11 − f el

22)
2 + 4f el

12f el
21

2m0
, (7)

as well as an expression for the squared frequency with regard for
transverse oscillations and viscosity

(ωel,vis
⊥ )2 = −

(
f el
⊥⊥ + γ2

4m0

)
m0

, (8)
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Model: Viscosity impact

with

f el
11 = −4κ1 sin

2
(

k1a
2

)
+ 4κ3 sin

2
(

k1a− k2b
2

)
cosα13 sinα23

sinα12
,

f el
12 = −4κ1 sin

2
(

k1a
2

)
cosα12 + 4κ3 sin

2
(

k1a− k2b
2

)
cosα23 sinα23

sinα12
,

f el
21 = −4κ2 sin

2
(

k2b
2

)
cosα12 − 4κ3 sin

2
(

k1a− k2b
2

)
cosα13 sinα13

sinα12
,

f el
22 = −4κ2 sin

2
(

k2b
2

)
− 4κ3 sin

2
(

k1a− k2b
2

)
cosα23 sinα13

sinα12
.
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Model: Dipole-dipole interaction

The force acting on the side of the (1,0) dipole
on the (0,0) dipole is determined by the
equality

F10 =
3k
r5
10

{[
d2 − 5 (d · r10)

2 /r2
10

]
r10 +

+2 (d · r10)d} ,

with k = 1/(4πεε0) being the Coulomb
constant; d – tubulin dipole moment.
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Model: Dipole-dipole interaction

The solution of Newton’s equations taking into account elasticity,
viscosity and dipole-dipole interaction

m0ün,m = Fel
n,m + (Fel

n,m)
⊥ + Fvis

n,m + Fdip
n,m.

leads to the cubic equation for the squared frequency ω2∣∣∣∣∣∣∣∣
f el
11 + f dip

11 + γ2

4m0
+ m0ω

2 f el
12 + f dip

12 f dip
1⊥

f el
21 + f dip

21 f el
22 + f dip

22 + γ2

4m0
+ m0ω

2 f dip
2⊥

f dip
⊥1 f dip

⊥2 f el
⊥⊥ + f dip

⊥⊥ + γ2

4m0
+ m0ω

2

∣∣∣∣∣∣∣∣ = 0,

from which we obtain a result for the frequencies.
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Results: Different directions of wave propagation

The figure presents
the dependence of frequency
on the wave vector module
for three different directions
of wave propagation,
namely helix, along the
protofilament and anti-helix
ones. In this case, the
lattice node oscillations along
the microtubule axis were

considered (i. e. the wave is polarized along the microtubule axis) and
elastic interaction between the lattice nodes was only taken into
account. Figure demonstrates that the first frequency peak is reached
at the wave length λmax amounting to the doubled distance between
the lattice nodes in this propagation path. The frequency peak being
the same for all of the directions under consideration and amounting
to 3.15× 1011 rad/s.
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Results: Different polarization directions

The figure presents the
frequency dependence on
the wave vector for different
polarization directions, with
the wave propagating along
the protofilament. The figure
suggests that the frequency
peak is reached in the case
of the longitudinally polarized
waves. For two other cases

(TA and ZA), the frequency is considerably lower. Thus, for the
transversal oscillations (TA), the frequency peak is reached at
k = 7.15× 108 rad/m and is ω = 3.6× 1010 rad/s. For the oscillations
occurring out-of-plane (ZA), the frequency peak is reached at
k = 3.95× 108 rad/m and is ω = 3.2× 1010 rad/s.
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1) Calculations for the longitudinally polarized waves, with the
wave propagating along the protofilament.

2) Calculations for the transversely polarized waves, with the
wave propagating along the protofilament.

3) Calculations for the out-of-plane polarized waves, with the
wave propagating along the protofilament.

The figures present dipole-dipole impact
on the wave frequency. The dipole-dipole
interaction impact depends on the mutual
orientation of the wave polarization and the
dipole moment direction. There is the
range of wave lengths for the transversely
polarized waves (figure 2) in wich the
frequency becomes an absolutely
imaginary value, which may correspond to
the lattice destruction.
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1) The longitudinally polarized waves, with the wave propagating
along the protofilament.

2) The transversely polarized waves, with the wave propagating
along the protofilament.

3) The out-of-plane polarized waves, with the wave propagating
along the protofilament.

The figures present viscosity impact on the
wave frequency. Viscosity decreases the
oscillation frequency value significantly for the
longitudinally polarized waves. In the areas
0 < k < 1.2× 108 rad/m and k > 6.7× 108

rad/m there are no damping harmonic
oscillations. In these areas, the lattice nodes
deviation from the state of equilibrium
decreases exponentially. Viscosity dampens the
oscillations occurring in the TA and ZA
directions respectively. In these cases there are
no solutions corresponding to the damping
harmonic oscillations.
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Conclusion

It has been shown that the direction of the wave polarization
influences the frequency velocity values in the lattice considerably.
The impact of dipole-dipole interaction greatly depends on the
direction of the wave polarization; thus, it is only moderate for the
longitudinally (LA) polarized waves while it is sufficient for the
transversely (TA), and out-of-plane (ZA) polarized waves.
Moreover dipole-dipole interaction may result in the waves which
are able to cause the rupture of microtubules.
With viscosity considered, lattice oscillations become harmonically
damped only over a certain wavelength range when longitudinal
polarization occurs. Out of this range as well as for the other
polarization directions, lattice deviations from equilibrium are
dampened exponentially.
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Thank you for your attention
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