The task of finding the chemical composition of an unknown medium by multi-energy radiography method

Nazarov V.G.

Institute of Applied Mathematics, FEBRAS, Vladivostok, 2019

Scheme of experiment

Figure: Scheme of experiment

Radiation flux is collimated by direction and energy
We use the following notation:
$0.1 \mathrm{Mev}=E_{1}<E_{2}<\ldots<E_{\bar{N}}=20 \mathrm{Mev}-$ energies set, $N \leq \bar{N}=20$
X_{0} - unknown substance, ρ_{0} - its density, I - thickness $h_{k}=h\left(E_{k}\right), H_{k}=H\left(E_{k}\right)$ - incoming and outgoing radiation flux densities

Statement of the problem of chemistry

X_{1}, \ldots, X_{N} - chemical elements composing X_{0}
$\rho_{\times 1}, \ldots, \rho_{\times N}$ - densities of X_{1}, \ldots, X_{N}
w_{1}, \ldots, w_{N} - weight fractions of X_{1}, \ldots, X_{N} - UNKNOWN
$\mu_{x i k}=\mu_{x i}\left(E_{k}\right)$ - coefficients of radiation attenuation of X_{1}, \ldots, X_{N}
$\rho_{0}, \quad \mu_{0 k}=\mu_{0}\left(E_{k}\right)$ - density and coefficient of attenuation of X_{0} - UNKNOWN
For each energy value E_{k} radiation transfer equation gives

$$
\begin{equation*}
H_{k}=h_{k} \exp \left(-l \mu_{0 k}\right) \text { or }-l \mu_{0 k}=\ln \left(\frac{H_{k}}{h_{k}}\right) ; \quad k=1, \ldots, N . \tag{1}
\end{equation*}
$$

For each energy value E_{k} the equality holds:

$$
\begin{equation*}
\mu_{0 k}=\rho_{0} \sum_{i=1}^{N} w_{i} \frac{\mu_{x i k}}{\rho_{x i}} \tag{2}
\end{equation*}
$$

Substituting the equality (2) into the formula (1) we have the system:

Statement of the problem of chemistry

$$
\begin{gather*}
\sum_{i=1}^{N} \frac{\mu_{x i k}}{\rho_{x i}} \cdot\left(I \rho_{0} w_{i}\right)=\ln \frac{h_{k}}{H_{k}} ; \quad k=1, \ldots, N \tag{3}\\
\sum_{i=1}^{N} w_{i}=1 \tag{4}\\
w_{i} \geq 0 ; \quad i=1, \ldots, N \tag{5}
\end{gather*}
$$

The problen of chemistry:

Find the quantities $\rho_{0}, w_{i}, i=1, \ldots, N$ satisfying equations (3), (4) and inequalities (5) provided that all other quantities included in (3) are know.

Rewrite the system (3) in the form $A x=b$ or

$$
\begin{equation*}
\sum_{i=1}^{N} A_{k i} x_{i}=b_{k} ; \quad k=1, \ldots, N \tag{6}
\end{equation*}
$$

where $A_{k i}=\mu_{x i k} / \rho_{x i}=\mu_{x i}\left(E_{k}\right) / \rho_{x i} ; \quad x_{i}=l \rho_{0} w_{i} ; \quad b_{k}=\ln \left(h_{k} / H_{k}\right)$.

Perturbation of the solution

Rewrite the system (6) in the form

$$
A x=b
$$

and represent x and b as
$x=x_{T}+\delta x$, where x_{T} - true solution to a system (6), δx - perturbation of solution $b=b_{T}+\delta b$, where b_{T} - true value of the vector $b, \quad \delta b$ - perturbation of b, then

$$
\begin{equation*}
A\left(x_{T}+\delta x\right)=b_{T}+\delta b, \quad A x_{T}=b_{T}, \quad A(\delta x)=\delta b \tag{7}
\end{equation*}
$$

The singular decomposition of the matrix A is valid

$$
\begin{equation*}
A=U S V^{T}, \tag{8}
\end{equation*}
$$

where $S=\operatorname{diag}\left\{\sigma_{1}, \ldots, \sigma_{\mathrm{N}}\right\}$ - diagonal matrix, V and U - orthogonal matrices. Matrix A is almost always non-degenerate; in this case

$$
\begin{equation*}
A^{-1}=V S^{-1} U^{T} \tag{9}
\end{equation*}
$$

$\Omega=\left\{\delta b \mid \delta b \in \mathbb{R}^{N},\|\delta b\|=1\right\}$ - the unit sphere $A^{-1}(\Omega)=V S^{-1}(\Omega)$ is an ellipse with semiaxes $\left\{\sigma_{1}^{-1}, \ldots, \sigma_{N}^{-1}\right\}$

Finding a set containing a solution to a problem

We use the following notation:
$E^{(p)}=\left(E_{1}^{(p)}, E_{2}^{(p)}, \ldots, E_{N}^{(p)}\right)$ - a vector formed from energies satisfying condition $E_{1}^{(p)}<E_{2}^{(p)}<\ldots<E_{N}^{(p)}$.
$C_{20}^{N}=\frac{20!}{N!\cdot(20-N)!}-$ number of different vectors $E^{(p)}$
$A^{(p)}$ - non-degenerate matrix of system (6) corresponding to the vector $E^{(p)}$
We will conduct a series of experiments on the irradiation of the sample.
Each series consists of N experiments in which the sample is irradiated to light at each energy $E_{1}^{(p)}, E_{2}^{(p)}, \ldots, E_{N}^{(p)}$
$b^{(p ; n)}=b_{T}^{(\rho)}+\delta b^{(p ; n)}$ - the result of such an experiment in the n-th series of measurements
$\widehat{\Pi}^{(p)}=\left\{z\left|z=\left(z_{1}, \ldots, z_{N}\right) \in \mathbb{R}^{N},\left|z_{k}\right| \leq r_{k}, k=1, \ldots, N\right\}\right.$ - parallelepiped in the space of the right-hand parts of the system (6)
$\widehat{T}^{(p)}=\left[A^{(p)}\right]^{-1}\left(\widehat{\Pi}^{(p)}\right)$ - the inverse image of $\widehat{\Pi}^{(p)}$
$\Omega=\left\{\delta b \mid \delta b \in \mathbb{R}^{N},\|\delta b\|=1\right\}$ - the unit sphere in the space of the right-hand parts of the system (6)

Finding a set containing a solution to a problem

Figure: Small square $\widehat{\Pi}^{(p)}$ with a side $\sqrt{2}$ and a unit ball Ω belong to the space of the right-hand parts of the system (6) and limit possible perturbations of the system. Parallelogram $\left[A^{(p)}\right]^{-1}\left(\widehat{\Pi}^{(p)}\right)$ and ellipse $\left[A^{(p)}\right]^{-1}(\Omega)$ are inverse images of these two figures.

Finding a set containing a solution to a problem

For any n-th series of irradiation of the sample we have:

$$
\begin{aligned}
& \quad x_{T} \in x_{T}+\delta x^{(p ; n)}+\left[A^{(p)}\right]^{-1}\left(\widehat{\Pi}^{(p)}\right) \\
& x_{T}+\delta x^{(p ; n)}=\left[A^{(p)}\right]^{-1}\left(b_{T}+\delta b^{(p ; n)}\right)=\left[A^{(p)}\right]^{-1}\left(b^{(p ; n)}\right) \quad \text { and } \\
& {\left[A^{(p)}\right]^{-1}\left(\widehat{\Pi}^{(p)}\right) \text { are known }}
\end{aligned}
$$

From inclusion (10) we hawe:

$$
\begin{equation*}
x_{T} \in Q_{n}=\bigcap_{i=1}^{n}\left(x_{T}+\delta x^{(p ; i)}+\left[A^{(p)}\right]^{-1}\left(\widehat{\Pi}^{(p)}\right)\right) \tag{11}
\end{equation*}
$$

Under some assumptions we have: $\operatorname{diam}\left(Q_{n}\right) \rightarrow 0$ when $n \rightarrow \infty$

Finding a set containing a solution to a problem

We assume that the following is valid:

1) for any energy vector $E^{(p)}=\left(E_{1}^{(p)}, E_{2}^{(p)}, \ldots, E_{N}^{(p)}\right)$ and any $k=1, \ldots, N$ we know a number $r_{k}>0$ such as for any n

$$
\begin{equation*}
\left|\delta b_{k}^{(p ; n)}\right|=\left|b_{T, k}^{(p)}-b_{k}^{(p ; n)}\right| \leq r_{k} \tag{12}
\end{equation*}
$$

2) for any energy vector $E^{(p)}$ any $\varepsilon>0$ and any facet of polyhedron $\widehat{\Pi}^{(p)}$ there exists n-th series of measurements such as the distance between $\delta b_{k}^{(p ; n)}$ and the facet is less than ε
3) radiation detector has no systematic errors

Theorem

If assumptions 1), 2), 3) are fulfilled the diameter of the set

$$
\begin{equation*}
Q_{n}=\bigcap_{i=1}^{n}\left(x_{T}+\delta x^{(p ; i)}+\left[A^{(p)}\right]^{-1}\left(\widehat{\Pi}^{(p)}\right)\right) \tag{13}
\end{equation*}
$$

tends to zero when n tends to infinity

References I

Nazarov V. G. On increase of calculation accuracy at the problem of determining the chemical composition of a medium
Dalnevostochnyj matematicheskij zhurnal 2018. Vol. 18. N 2. C. 219-232. (in Russian)
R Nazarov V.G. Method of singular value decomposition at the problem of determining the chemical composition of a medium
Sibirskie elekronnye matematicheskie izvestiya. 2017. Vol. 14. C. 821-837. (in Russian)

Hubbell J.H., Seltzer S.M. Tables of X-Ray Mass Attenuation Coefficients and Mass Energy Absorption Coefficients 1 Kev to 20 Mev for Elements $\mathrm{Z}=1$ to 92 and 48 Additional Substances of Dosimetric Interest
Preprint NISTIR-5632. National Institute of Standards and Technology. Gaithersburg. MD. 1995.
國 Godunov S. K., Antonov A. G., Kiriluyk O. P., Kostin V.I. Guaranteed accuracy of solving systems of linear equations in Euclidean spaces
Novosibirsk. Nauka, 1988. 456 s. (in Russian)

