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Introduction

We investigate the mathematical model of the 2D acoustic waves
propagation in homogeneous and heterogeneous areas. The hyperbolic first
order system of partial differential equations is considered and solved by the
Godunov method of the first order of approximation. This is direct problem
with appropriate boundary conditions.

As the main aim of the work we solve coefficient inverse problem of
recovering density of the medium. Inverse problem is reduced to an
optimization problem which is solved by gradient descent method.



Direct problem



Two-dimensional system of equations of acoustic waves propagation

Equations (conservations laws)
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𝜕𝑢

𝜕𝑡
+
1

𝜌

𝜕𝑝

𝜕𝑥
= 0

𝜕𝑣

𝜕𝑡
+
1

𝜌

𝜕𝑝

𝜕𝑦
= 0

𝑢 − velocity in direction x

ρ − density

𝑝 − pressure

𝜕𝑝

𝜕𝑡
+ 𝜌𝑐2

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
= ΘΩ 𝑥, 𝑦 𝐼(𝑡)

𝑣 − velocity in direction y
𝑢, 𝑣, 𝑝 ቚ

𝑥,𝑦 ∈𝜕Ω
= 0

𝑢, 𝑣, 𝑝 ቚ
𝑡=0

= 0

Ω = x, y ∈ 0: 𝐿 × [0: 𝐿]

Boundary and initial conditions

Domain

x, y ∈ Ω
0 < 𝑡 < 𝑇

𝐼 𝑡 = 1 − 2 𝜋 𝜈0 𝑡 −
1

𝜈0

2

𝑒
−𝜋 𝜈0 𝑡−

1
𝜈0

Ricker wavelet

с − sound speed

Direct problem: find 𝑢, 𝑣, 𝑝 inside Ω



Types of medium
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Heterogeneous density 
and 
heterogeneous velocity

Heterogeneous  density 
and
homogeneous velocity

𝜌(𝑥, 𝑦) 𝑐(𝑥, 𝑦)



Godunov method for 1D acoustic equations.
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, 𝑗 +
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1
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1

2

𝒊, 𝒋 + 𝟏/𝟐

𝑈𝑖,𝑗+ Τ1 2 =
𝑢𝑖− Τ1 2,𝑗+ Τ1 2 + 𝑢𝑖+ Τ1 2,𝑗+ Τ1 2

2
−

1

ρ𝑐

𝑝𝑖+ Τ1 2,𝑗+ Τ1 2 − 𝑝𝑖− Τ1 2,𝑗+ Τ1 2

2

𝑃𝑖,𝑗+ Τ1 2 =
𝑝𝑖− Τ1 2,𝑗+ Τ1 2 + 𝑝𝑖+ Τ1 2,𝑗+ Τ1 2

2
− ρ𝑐

𝑢𝑖+ Τ1 2,𝑗+ Τ1 2 − 𝑢𝑖− Τ1 2,𝑗+ Τ1 2

2

𝑉𝑖+ Τ1 2,𝑗 =
𝑣𝑖+ Τ1 2,𝑗− Τ1 2 + 𝑣𝑖+ Τ1 2,𝑗+ Τ1 2

2
−

1

ρ𝑐

𝑝𝑖+ Τ1 2,𝑗+ Τ1 2 − 𝑝𝑖+ Τ1 2,𝑗− Τ1 2

2

𝑃𝑖+ Τ1 2,𝑗 =
𝑝𝑖+ Τ1 2,𝑗− Τ1 2 + 𝑝𝑖+ Τ1 2,𝑗+ Τ1 2

2
− ρ𝑐

𝑣𝑖+ Τ1 2,𝑗+ Τ1 2 − 𝑣𝑖+ Τ1 2,𝑗− Τ1 2

2

Part 1. Finding solution of decay of discontinuity on each boundary

Part 2. Applying finite-difference conservation laws

𝑢𝑖+ Τ1 2,𝑗+ Τ1 2 = 𝑢𝑖+ Τ1 2,𝑗+ Τ1 2 −
τ

ρℎ𝑥
𝑃𝑖+1,𝑗+ Τ1 2 − 𝑃𝑖,𝑗+ Τ1 2

𝑣𝑖+ Τ1 2,𝑗+ Τ1 2 = 𝑣𝑖+ Τ1 2,𝑗+ Τ1 2 −
τ

ρℎ𝑦
𝑃𝑖+ Τ1 2,𝑗+1 − 𝑃𝑖+ Τ1 2,𝑗

𝒊 + 𝟏/𝟐, 𝒋

𝑝𝑖+ Τ1 2,𝑗+ Τ1 2 = 𝑝𝑖+ Τ1 2,𝑗+ Τ1 2 −
τ

ℎ𝑥
ρ𝑐2 𝑈𝑖+1,𝑗+ Τ1 2 − 𝑈𝑖,𝑗+ Τ1 2

−
τ

ℎ𝑦
ρ𝑐2 𝑉𝑖+1/2,𝑗+1 − 𝑉𝑖+1/2,𝑗 − τθΩ𝑖+1/2,𝑗+1/2

𝐼𝑘



Direct problem solution
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Inverse problem



What is the goal of solving inverse problem?

9

𝜌(𝑥, 𝑦) 𝑐(𝑥, 𝑦)

?Density
reconstruction

or

There is system of receivers 
where data is registered

We have additional information

about solution

𝑓𝑖 𝑡 = 𝑝 𝑥𝑖 , 𝑦𝑖 , 𝑡 ,
𝑖 = 1…𝑁

System of 
1 source (green)
15 receivers (violet)
1 object (blue)
2 inclusions (orange)

Here 𝑁 – is a number of all points 𝑥𝑖 , 𝑦𝑖
that represent any part of receiver



The statement of inverse problem

Equations (conservations laws)

10

𝜕𝑢

𝜕𝑡
+
1

𝜌

𝜕𝑝

𝜕𝑥
= 0

𝜕𝑣

𝜕𝑡
+
1

𝜌

𝜕𝑝

𝜕𝑦
= 0

𝜕𝑝

𝜕𝑡
+ 𝜌𝑐2

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
= ΘΩ 𝑥, 𝑦 𝐼(𝑡)

𝑢, 𝑣, 𝑝 ቚ
𝑥,𝑦 ∈𝜕Ω

= 0

𝑢, 𝑣, 𝑝 ቚ
𝑡=0

= 0

Ω = x, y ∈ 0: 𝐿 × [0: 𝐿]

Boundary and initial conditions

Domain

x, y ∈ Ω
0 < 𝑡 < 𝑇

𝐼 𝑡 = 1 − 2 𝜋 𝜈0 𝑡 −
1

𝜈0

2

𝑒
−𝜋 𝜈0 𝑡−

1
𝜈0

Ricker wavelet

𝑓𝑖 𝑡 = 𝑝 𝑥𝑖 , 𝑦𝑖 , 𝑡 ,
𝑖 = 1…𝑁

Additional information (data)

Inverse problem: find density 𝜌 inside Ω
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Method for solving inverse problem
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Inverse problem is reduced to optimization problem. Cost functional is

𝑱 𝝆 = න

𝟎

𝑻



𝒊=𝟏

𝑵

𝒑 𝒙𝒊, 𝒚𝒊, 𝒕; 𝝆 − 𝒇𝒊 𝒕
𝟐𝒅𝒕 =

= න

𝟎

𝑻

න

𝟎

𝑳

න

𝟎

𝑳



𝒊=𝟏

𝑵

𝜹(𝒙 − 𝒙𝒊, 𝒚 − 𝒚𝒊) 𝒑 𝒙, 𝒚, 𝒕; 𝝆 − 𝒇𝒊 𝒕
𝟐𝒅𝒙𝒅𝒚𝒅𝒕 → min

𝝆

Idea: to reduce deviation of approximated and measured data 

Method: gradient descent method
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How to compute gradient from one source?
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J′ 𝜌 = J′ 𝜌 (𝑥, 𝑦) = න

0

𝑇

−𝑢𝜓1𝑡 − 𝑣𝜓2𝑡 +
1

𝜌
𝜓3 𝑢𝑥 + 𝑣𝑦 𝑑𝑡

𝜓1, 𝜓2, 𝜓3 - solution of adjoint problem

𝜕𝜓1

𝜕𝑡
+
1

𝜌

𝜕𝜓3

𝜕𝑥
= 0

𝜕𝜓2

𝜕𝑡
+
1

𝜌

𝜕𝜓3

𝜕𝑦
= 0

𝜕𝜓3

𝜕𝑡
+ 𝜌𝑐2

𝜕𝜓1

𝜕𝑥
+
𝜕𝜓2

𝜕𝑦
= 2

𝑖=1

𝑁

𝛿 𝑥 − 𝑥𝑖 , 𝑦 − 𝑦𝑖 𝑝 −𝑓𝑖

𝜓1, 𝜓2, 𝜓3 ቚ
𝑥,𝑦 ∈𝜕Ω

= 0

𝜓1, 𝜓2, 𝜓3 ቚ
𝑡=𝑇

= 0

𝑢, 𝑣, 𝑝 - solution of direct problem

𝝆𝒏+𝟏 = 𝝆𝒏 − 𝜶𝑱′(𝝆𝒏)Classical method:

For a current approximation of density 𝜌
and fixed position of source !
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Gradient method with changing position of source
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Gradient descent method with 
changing position of source

1) Classical version

𝜌𝑛+1 = 𝜌𝑛 − 𝛼𝐽′(𝜌𝑛)

Each iteration – one gradient of a source 
from random position in circle
Other positions - receivers

One turn – new iteration

The influence only from 

one source
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Gradient method
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Gradient descent method with 
changing position of source

1) Classical version

𝜌𝑛+1 = 𝜌𝑛 − 𝛼𝐽′(𝜌𝑛)

Each iteration – one gradient of a source 
from random position in circle
Other positions - receivers

2) Modified version

𝜌𝑛+1 = 𝜌𝑛 − 𝛼

𝑗=1

𝐾

𝐽𝑖′(𝜌𝑛)

Each iteration – sum of gradients
from all sources in all positions in circle
Other positions - receivers

One turn – new iteration

The influence only from 

one source

15 turns – new iteration

The influence from 

all sources
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Algorithm for solving inverse problem
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1) For each source ∀ 𝑗 = 1…𝐾

1) Solve direct problem and gather trace 𝑝𝑗(𝑥𝑖 , 𝑦𝑖 , 𝑡; 𝜌𝑛)

2) Compute difference 𝑝𝑗 𝑥𝑖 , 𝑦𝑖 , 𝑡; 𝜌𝑛 − 𝑓𝑗(𝑥𝑖 , 𝑦𝑖 , 𝑡)

3) Solve adjoint problem
4) Compute gradient 𝐽𝑗

′ = 𝐽𝑗′(𝜌𝑛)

2) Summarize all gradients
3) Make descent step

𝜌𝑛+1 = 𝜌𝑛 − 𝛼

𝑗=1

𝐾

𝐽𝑗′(𝜌𝑛)

4) Check residual and relative error. If not enough, go to point 1.

• Solve direct problem for exact density and gather data for each position of source  ∀𝑗 = 1…𝐾

𝑓𝑗 𝑥𝑖 , 𝑦𝑖 , 𝑡 = 𝑝𝑗 𝑥𝑖 , 𝑦𝑖 , 𝑡; 𝜌𝑒𝑥𝑎𝑐𝑡 ∀ 𝑗 = 1…𝐾 ∀𝑖 = 1…𝑁

• Set initial approximation 𝜌0



Numerical results
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Numerical model. Different amount of receivers.

Numerical grid: 500 x 500. 𝑳𝒙 = 𝑳𝒚 = 0.3. 𝑹𝒓𝒆𝒄 = 0.01. Velocity is constant in the whole domain.

𝑓𝑗 𝑥𝑖 , 𝑦𝑖 , 𝑡 = 𝑝𝑗 𝑥𝑖 , 𝑦𝑖 , 𝑡; 𝜌𝑒𝑥𝑎𝑐𝑡

Data with noise

𝑓𝑗 𝑥𝑖 , 𝑦𝑖 , 𝑡 = 𝑝𝑗 𝑥𝑖 , 𝑦𝑖 , 𝑡; 𝜌𝑒𝑥𝑎𝑐𝑡 + (max−min) 𝛼
𝑁𝑆

100

Synthetic data
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Rarefaction wave intersects shock wave. N = 300.

𝑲 = 𝟐. Noise 10 %𝑲 = 𝟐Exact solution 𝑹𝟐(𝒙, 𝒕)

𝑲 = 𝟒

Numerical results. K = 2 and K = 4.

𝑲 = 𝟒. Noise 10 %
𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 1000
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Rarefaction wave intersects shock wave. N = 300.

𝑲 = 𝟖. Noise 10 %𝑲 = 𝟖Exact solution 𝑹𝟐(𝒙, 𝒕)

𝑲 = 𝟏𝟔

Numerical results. K = 8 and K = 16.

𝑲 = 𝟏𝟔. Noise 10 %
𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 1000
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Rarefaction wave intersects shock wave. N = 300.Relative errors

K Relative error (exact data) Relative error (noisy data)

2 5.7 % 5.9 %

4 4.1 % 4.5 %

8 2.8 % 3.1 %

16 2.6 % 2.8 %

𝑅𝑒𝑙. 𝑒𝑟𝑟𝑜𝑟 =
𝜌𝑒𝑥𝑎𝑐𝑡 − 𝜌𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 𝐿2

𝜌𝑒𝑥𝑎𝑐𝑡 𝐿2

× 100

𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 1000



Thank you for attention!
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How to compute gradient from one source?
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J′ 𝜌 = J′ 𝜌 (𝑥, 𝑦) = න

0

𝑇

−𝑈𝜓1𝑡 − 𝑉𝜓2𝑡 +
1

𝜌
𝜓3 𝑈𝑥 + 𝑉𝑦 𝑑𝑡

𝜓1, 𝜓2, 𝜓3 - solution of adjoint problem

𝜕𝜓1

𝜕𝑡
+
1

𝜌

𝜕𝜓3

𝜕𝑥
= 0

𝜕𝜓2

𝜕𝑡
+
1

𝜌

𝜕𝜓3

𝜕𝑦
= 0

𝜕𝜓3

𝜕𝑡
+ 𝜌𝑐2

𝜕𝜓1

𝜕𝑥
+
𝜕𝜓2

𝜕𝑦
=

𝑖=1

𝑁

𝛿 𝑥 − 𝑥𝑖 , 𝑦 − 𝑦𝑖 𝑝 −𝑓𝑖 𝑑𝑥𝑑𝑦𝑑𝑡

𝜓1, 𝜓2, 𝜓3 ቚ
𝑥,𝑦 ∈𝜕Ω

= 0

𝜓1, 𝜓2, 𝜓3 ቚ
𝑡=𝑇

= 0

𝑈, 𝑉 - solution of direct problem


