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Scales of human immune system organization

Tretyakova et al. Developing Comp Geometry and Network Graph Models of Human Lymphatic System, 2017
Janeway’s Immunobiology, 9th edition, 2017
Bocharov et al. Mathematical Immunology of Virus Infections, 2018
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Scales of human immune system organization

Ludewig et al. A global ”imaging” view on systems approaches in immunology, 2012 2



Lymph node structure

Krstic, Human Microscopic Atlas, 1994 3



Lymph node structure

Kislitsyn et al. Computational approach to 3D modeling of the lymph node geometry. 2015 4



Hybrid multiscale modelling



Hybrid 2D model of HIV infection in lymph node

Bouchnita A, Bocharov G, Meyerhans A, Volpert V. Towards a Multiscale Model of Acute HIV Infection.
Computation 2017; 5:6. 5



Hybrid 2D model of HIV infection in lymph node

• Bouchnita A, Bocharov G, Meyerhans A, Volpert V. Towards a Multiscale Model of Acute HIV Infection. Computation 2017; 5:6.

• Bouchnita A, Bocharov G, Meyerhans A, Volpert V. Hybrid approach to model the spatial regulation of T cell responses. BMC

Immunology 2017; 18:29.
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Modelling immune cell motility



Experimental data of lymphocyte motility

Trajectories of T cell migration
(in vivo microscopy of T cell zone of murine lymph nodes):

Read et al. Leukocyte Motility Models Assessed through Simulation and Multi-objective Optimization-Based
Model Selection. 2016 7



Metrics characterizing the motility of immune cells
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Empirical distributions (statistical profile)

Read et al. Leukocyte Motility Models Assessed through Simulation and Multi-objective Optimization-Based
Model Selection. 2016 9



Existing types of cell motility models

• Agent-based models
• Based on classical mechanics equations (isotropic particle
models, dissipative particle dynamics)

• Based on energetic formulation of cell systems (cellular Potts
model, phase-field models)

Camley, Rappel. Physical models of collective cell motility: from cell to tissue. 2017 10



Model of cell motility (isotropic particle model)

Equations governing the cell movement

miẍi = Fi =
∑
j ̸=i

fij + fri − µẋi in Ω

include

• dissipative friction forces −µẋi,
• cell-to-cell interaction forces

∑
j ̸=i
fij,

• stochastic force of active (intrinsic) cell motility fri .
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Cell-to-cell interaction forces fij
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Cell-to-cell interaction forces fij

Force of cell-cell adhesion (minimum of fij(x)) is estimated by the
data on single-cell force spectroscopy∗:

fadhTC−TC ≈ 0.01nN

fadhTC−DC ≈ 1nN

∗Lim et al. CD80 and CD86 Differentially Regulate Mechanical Interactions of T-Cells with Antigen-Presenting
Dendritic Cells and B-Cells. 2012 13



The force of active motility fri

The force of active motility implicitly describes the guidance of T
cells by stromal structure using empirical model of correlated
random walk.

• Sampling is based on empirical model for velocities IHomoCRW1,
which fits well the empirical statistical profile.

• The force sampled by rules of IHomoCRW is corrected based on
model of contact inhibition of locomotion2 (CIL).

1Read et al. Leukocyte Motility Models Assessed through Simulation and
Multi-objective Optimization-Based Model Selection. 2016
2Zimmermann et al. Contact inhibition of locomotion determines cell-cell
and cell-substrate forces in tissues. 2016 14



The force of active motility (mi, without CIL)

Every ∆t = 30 seconds the magnitude and direction of force are
updated. The force magnitude is sampled from normal distribution:

Kri ∈ |N(µ(Kr), σ(Kr))|

The angle θ, by which the direction of force is changed, is
determined by equations:

α ∈ N(0, σ(α)), θ = α ·

(
1−

( Kri
Krmax

)β
)
,

where β — scalar coefficient, which parametrizes the inverse relation
between translational speed and turning angle speed.

We estimated µ(Kr) = 3 nN, Krmax = 3.9 nN
(compare with ∼5 nN forces exerted by a CTL to destruct the
membrane of a target cell).
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The force of active motility (fri , correction by CIL)

f∗i = cinhm̂i + R̂i,

R̂i =
∑

j,hij⩽ri+rj

xi − xj
hij

,

fri = −
Kri f∗i

cinh + n ,

where Kri — the magnitude of motility force (without CIL-correction),
n — number of contacting neighboring cells,
m̂i — the direction of motility force,
R̂i determines the shift of force direction due to CIL,
cinh — weighting coefficient determining CIL level.
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Model calibration



Model calibration by experimental data

Protocol to obtain statistical profile:
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Model calibration by experimental data
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Figure 1: Red color denotes the CDFs obtained from simulations, blue color
— target experimental CDFs1.

1Read et al. Leukocyte Motility Models Assessed through Simulation and Multi-objective Optimization-Based
Model Selection. 2016 18



Examples of simulated trajectories

0 100 200 300 400

0
10

0
20

0
30

0
40

0

x, μm

y, 
μm

Figure 2: Examples of simulated trajectories of 15 randomly selected cells
during 5 hours of simulation time.
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The simulated fields of cell velocities and net forces

Figure 3: The field of (left) cell velocities and (right) net forces acting on the
cells in a 100×100 µm2 area of lymph node.
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Model validation



Model validation
Immune response on Ovalbumin

Kitano et al. Imaging of the cross-presenting dendritic cell subsets in the skin-draining lymph node. 2016 21



Model validation

Approximated lymph node geometry, configuration of initial state:

22



Spatio-temporal dynamics of immune response on Ovalbumin
in lymph node

t t
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Model predictions



Conditions for timely detection of HIV-infected cells in LNs
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Conditions for timely detection of HIV-infected cells in LNs

Grebennikov et al. Spatial Lymphocyte Dynamics in Lymph Nodes Predicts the Cytotoxic T Cell Frequency
Needed for HIV Infection Control. 2019 25



Studying the HIV transmission in
lymphoid tissue using multiscale
model



Extracellular distributions of HIV virions and IFN molecules

• Free HIV virions V(x, t) are secreted by infected cells (CD4+ T
cells and DCs).

• Interferon molecules I(x, t) are secreted by productively infected
DC.

Denoting c = {V, I}, we use reaction-diffusion equations with moving
source terms:

∂c
∂t = Dc∆c+ sc − dcc in ΩD,

c(x, t) = 0 on ∂ΩD, c(x, 0) = 0 in ΩD,

where sc is a source term describing secretion of the virions or
molecules by Nc(t) corresponding cells: sc(x, t) =

∑Nc(t)
k=1 ρcIΩk(x).

The reaction-diffusion equations are solved numerically using ADI
method on a uniform rectangular grid.
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Intracellular regulation of HIV
transmission



Intracellular HIV replication cycle

O. Orlova, Master Thesis, Moscow Institute of Physics and Technology, (2019). 27



Intracellular HIV replication cycle

O. Orlova, Master Thesis, Moscow Institute of Physics and Technology, (2019). 28



Model of cell infection (integration of viral genome)

Cell infection by HIV involves two mechanisms:

• cell-to-cell transmission, r(i)cell = k̂(i)cell(t) · N
(i)
neigh(t),

• infection by free virions, r(i)free = k̂(i)free(t)
∫
Ωi
V(x, t)dx,

The CD4 molecules expression is being downregulated since the start
of infection: k̂(i)free(t) = kfree · e−(t−t(i)inf)/td and k̂(i)cell(t) = kcell · e−(t−t(i)inf)/td .

The resulting stochastic model with time-dependent rates is
simulated using Temporal Gillespie Algorithm. Main idea:

P(τ |t∗) = exp

(
−
∫ t∗+τ

t∗
(kfreeVΩi(t) + kcellN(i)

neigh(t))e
−(t−t(i)inf)/tddt

)
,

P(τ |t∗) = exp (−L(t∗∗|t∗)) , t∗∗ = t∗ + τ,

1. Draw normalized waiting time τ ′ = L(t∗∗|t∗) ∼ Exp(1) from
standard exponential distribution.
2. Time t∗∗ when a next event will occur is given implicitly by the
equation L(t∗∗|t∗) = τ ′, which is solved numerically. 29



Model of cell infection (results of numerical simulations)
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Figure 4: Distributions of integrated proviruses in the infected cell in
different infection scenarios
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Model of HIV replication

dVgRNAn
dt = [TR] · Vint − (2 · ksp · (1− βfRev) + kexp · fRev + dRNA)VgRNAn,

dVdsRNAn
dt = ksp · (1− βfRev)VgRNAn − (kexp + dRNA)VdsRNAn,

dVdsRNA
dt = kexpVdsRNAn − (dRNA + kISG · bISG)VdsRNA,

d[Tat]
dt = rTatVdsRNA − dTat[Tat],

d[Rev]
dt = rRevVdsRNA − dRev[Rev],

dVgRNA
dt = kexp · fRev · VgRNAn − (2 · kmat + dRNA + kISG · bISG)VgRNA,

dVmat
dt = kmatVgRNA − (kρV + dHIV)Vmat,

where [TR] = [TRcell] + fTat · [TRTat],
fx = x/(1+ x+ KxVint), x = {Tat,Rev}.

The effect of bISG on VgRNA, VdsRNA will be described below.
31



Antiviral IFN response

M. Rinas, Data-driven modeling of the dynamic competition between virus infection and the antiviral interferon
response, PhD Thesis, University of Heidelberg, (2015). 32



Model of IFN response

Stochastic model of transitions between activation states:

• activation of STAT1/2 pathway (modelled as binary variable bST)
by extracellular IFN-β IΩi

• expression of interferon stimulated genes (ISGs) (modelled as
binary variable bISG), which increase degradation rates of HIV
RNA in cytoplasm VgRNA, VdsRNA

{bST = bISG = 0} aSTAT−−−→ {bST = 1,bISG = 0} rISG−−→ {bST = 1,bISG = 1},

where
aSTAT(t) = rSTAT

IΩi (t)
KI+IΩi (t)

and rISG are propensity rates of transitions,
IΩi(t) =

∫
Ωi
I(x, t)dx.

The stochastic model with time-dependent rates is simulated using
Temporal Gillespie Algorithm.
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Intracellular dynamics of HIV and IFN in infected CD4+ T cell
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Figure 5: Intracellular HIV replication in productively infected cell with
Vint = 2 integrated proviruses.
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Numerical simulations of HIV infection dynamics in LN
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Figure 6: Extracellular fields of (a) HIV virions, (b) IFN molecules, and (c) the
spatial distribution of cells (dendritic cell, infected and uninfected CD4+ T
cells, specific and nonspecific CD8+ T cells) at 48 hours postinfection.
(d) Temporal kinetics of total number of HIV virions in the computational
domain during 48 hours postinfection at various immune conditions. 35



Results

• The spatial population dynamics of immune cells and humoral
factors in lymphoid organs modelled with Newton’s second law
and reaction-diffusion equations, respectively calibrated using
experimental data for 2D consideration.

• For intracellular processes of immune cell fate regulation, both
deterministic and related stochastic models are developed in
pairs, that describe HIV replication and antiviral IFN response.

• The model is used to predict the necessary conditions on CTL
frequencies and motility which should be induced by HIV
vaccine to block local bursts of HIV infection in lymph nodes,
and the effect of antiviral IFN response on HIV transmission
dynamics.

The work is supported by grant from Russian Science Foundation 18-11-00171 36



Further research for development of the multiscale model
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