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Scales of human immune system organization

Lymph node
denditic cell "\
oaded with %
antigen 2 B-cell  subcapsular
folicle sinus

(virat sensors’

T
1
1
1
1
1
“Signal transduction’ |
1
1
1

Tretyakova et al. Developing Comp Geometry and Network Graph Models of Human Lymphatic System, 2017
Janeway's Immunobiology, 9th edition, 2017
Bocharov et al. Mathematical Immunology of Virus Infections, 2018



Scales of human immune system organization
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Lymph node structure

Krstic, Human Microscopic Atlas, 1994 3



Lymph node structure

Kislitsyn et al. Computational approach to 3D modeling of the lymph node geometry. 2015 4



Hybrid multiscale modelling



Hybrid 2D model of HIV infection in lymph node
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Hybrid 2D model of HIV infection in lymph node
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Modelling immune cell motility



Experimental data of lymphocyte motility

Trajectories of T cell migration
(in vivo microscopy of T cell zone of murine lymph nodes):
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Read et al. Leukocyte Motility Models Assessed through Simulation and Multi-objective Optimization-Based
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Metrics characterizing the motility of immune cells

translational speed v; = d;_1 /At
turn speed @; = 6; /At

meandering index m; = s;/ Z dy,

v(t — At) h=0



Empirical distributions (statistical profile)
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Existing types of cell motility models

- Agent-based models
Based on classical mechanics equations (isotropic particle
models, dissipative particle dynamics)
Based on energetic formulation of cell systems (cellular Potts
model, phase-field models)
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Model of cell motility (isotropic particle model)

Equations governing the cell movement

m,')'('i:Fi:Zfij+f}’*u){] in
JAI
include
- dissipative friction forces —pux;,
- cell-to-cell interaction forces ) fj,
JAI
- stochastic force of active (intrinsic) cell motility f.
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Cell-to-cell interaction forces fj;
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Cell-to-cell interaction forces fj;

Force of cell-cell adhesion (minimum of fj(x)) is estimated by the
data on single-cell force spectroscopy*:

fadh -~ 0.01nN

2" pc ~ 1N

*Lim et al. CD80 and CD86 Differentially Regulate Mechanical Interactions of T-Cells with Antigen-Presenting
Dendritic Cells and B-Cells. 2012 13



The force of active motility f7

The force of active motility implicitly describes the guidance of T
cells by stromal structure using empirical model of correlated
random walk.

- Sampling is based on empirical model for velocities IHomoCRW?,

which fits well the empirical statistical profile.
- The force sampled by rules of IHomoCRW is corrected based on

model of contact inhibition of locomotion? (CIL).

'Read et al. Leukocyte Motility Models Assessed through Simulation and

Multi-objective Optimization-Based Model Selection. 2016
2Zimmermann et al. Contact inhibition of locomotion determines cell-cell

and cell-substrate forces in tissues. 2016
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The force of active motility (m;, without civ)

Every At = 30 seconds the magnitude and direction of force are
updated. The force magnitude is sampled from normal distribution:

Ki € IN(u(K"), o (K))]

The angle 0, by which the direction of force is changed, is
determined by equations:

a e N(0,0(a)), 0=a- <1 = (K:;)ﬁ) ;

where 8 — scalar coefficient, which parametrizes the inverse relation
between translational speed and turning angle speed.

We estimated p(K") = 3 nN, K},,q = 3.9 NN
(compare with ~5 nN forces exerted by a CTL to destruct the
membrane of a target cell).



The force of active motility (f, correction by ciL)

£ = cionf + R,

ﬁ _ Xi — X ’
1 muézn_wj h,‘j
G
Cinp + n’
where K7 — the magnitude of motility force (without cil-correction),
n — number of contacting neighboring cells,
M; — the direction of motility force,
ﬁi determines the shift of force direction due to CIL,
Cinn — Weighting coefficient determining CIL level.
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Model calibration




Model calibration by experimental data

Protocol to obtain statistical profile:

F

Protocol: * 30-min pre-run to randomly mix cells
* 10 experiments of 30 minutes length
* save cell positions every 30 seconds

412pm

Initial conditions:
4489 squarely tiled T cells with

3 um radii, =80% packing density,
zero velocities,

random motility force directions

858

Boundary conditions:
periodic

412pm

* exclude cells with total displacement < 27 um
* exclude cells passed through periodic boundaries



Model calibration by experimental data
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Figure 1: Red color denotes the CDFs obtained from simulations, blue color
— target experimental CDFs'.

"Read et al. Leukocyte Motility Models Assessed through Simulation and Multi-objective Optimization-Based
Model Selection. 2016 18



Examples of simulated trajectories
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Figure 2: Examples of simulated trajectories of 15 randomly selected cells
during 5 hours of simulation time.
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The simulated fields of cell velocities and net forces

Field of cell velocities Field of cell forces
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Figure 3: The field of (left) cell velocities and (right) net forces acting on the
cells in a 100x100 um? area of lymph node.
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Model validation




Model validation
Immune response on Ovalbumin
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Kitano et al. Imaging of the cross-presenting dendritic cell subsets in the skin-draining lymph node. 2016
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Model validation

Approximated lymph node geometry, configuration of initial state:

300um
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Nonspecific CD4* TCs: 3272 O Nonspecific CD8* TCs: 8846 O

22



Spatio-temporal dynamics of immune response on Ovalbumin

in lymph node

Median velocity of specific T cells Median distance between specific T cels and centroid of DCs

Quantity and duration of cognate DC - CD8* TC contacts

0
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Model predictions




Conditions for timely d i infected cells in LNs

Problem statement:

What time is needed to locate target cells? Studied effects of varying:

HIV-specific

CD8* TC frequency (8.0

HIV-infected DC

HiV-infected CD4™F TC

(C,E) intrinsic TC motility (D,E)

24



Conditions for timely detection of HIV-infected cells in LNs
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Studying the HIV transmission in
lymphoid tissue using multiscale
model



Extracellular distributions of HIV virions and IFN molecules

- Free HIV virions V(x, t) are secreted by infected cells (CD4+ T
cells and DCs).

- Interferon molecules I(x,t) are secreted by productively infected
DC.

Denoting ¢ = {V, I}, we use reaction-diffusion equations with moving
source terms:

oc :
EZDCAC—&—SC—dCC in Qp,

c(x,t) =0 on 99Qp, c(x,0) =0 in Qp,
where s. is a source term describing secretion of the virions or

molecules by N(t) corresponding cells: sc(x,t) = Zg;(f) pela, (X).

The reaction-diffusion equations are solved numerically using ADI
method on a uniform rectangular grid.

26



Intracellular regulation of HIV
transmission




Intracellular HIV replication
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Intracellular HIV replication
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Model of cell infection (integration of viral genome)

Cell infection by HIV involves two mechanisms:
- cell-to-cell transmission, rC’e)“ = kc’e)“( t) - 2’gigh(t),

- infection by free virions, free kjgee fQ’ V(x, t)dx

The CD4 molecules expression is bemg downregulated since the start
of infection: l?}ree( ) = Rpree - €7~ G/t and RO (£) = Reen - e~ 6/t

The resulting stochastic model with time-dependent rates is
simulated using Temporal Gillespie Algorithm. Main idea:

t*+1
P(7|t*) = exp <—/ (RfreeVay, (t) + Reer {Nnelgh(t)) (t— tmf)/tddt>

t*

P(7|t") = exp (=L(t*|t*)), ™ =t"+r,
1. Draw normalized waiting time 7/ = L(t**|t*) ~ Exp(1) from
standard exponential distribution.
2. Time t** when a next event will occur is given implicitly by the
equation L(t**|t*) = 7/, which is solved numerically. 29



Model of cell infection (results of numerical simulations)
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Figure 4: Distributions of integrated proviruses in the infected cell in
different infection scenarios
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Model of HIV replication

av,

ilRtNAn = [TR] - Vint — (2 - Rsp - (1 = Bfrev) + Rexp - frev + drna)Vornan,
av,

dCijZNAﬂ = Rsp - (1= Bfrev)Vgrnan — (Rexp + drna)Vasrnan,
av,

ZfstRNA = kexdeSRNAn - (dRNA + Risg - b/SG)VdSRNA7
d[Tat d[Rev
% = rratVasrna — drae[Tat], % = I'revVasrna — drev[ReV],
av,

é;NA = Rexp - frev - Vgrnan — (2 - Rmat + drna + Ris6 - bisg)Vgrnas
dvmat

TR RmatVgrna — (Rp, + duiv)Vmat,

where [TR] = [TRcell] JFfTat : [TRTat],
fi = X/(1+ x4+ KVint), x = {Tat, Rev}.

The effect of bisg 0N Vgrua, Vasrna Will be described below.
31



Antiviral IFN response
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M. Rinas, Data-driven modeling of the dynamic competition between virus infection and the antiviral interferon
response, PhD Thesis, University of Heidelberg, (2015). 32



Model of IFN response

Stochastic model of transitions between activation states:
- activation of STAT1/2 pathway (modelled as binary variable bsr)
by extracellular IFN-8 Iq,

- expression of interferon stimulated genes (ISGs) (modelled as
binary variable bjsg), which increase degradation rates of HIV
RNA in cytoplasm Vgrna, Vasrna

{bst = bisg = 0} =L {ber =1, bisg = 0} 2% {bst =1, bysg = 1},
where

astar(t) = rSWH,i and risg are propensity rates of transitions,
= Jo I(x,1) dx.

The stochastic model with time-dependent rates is simulated using
Temporal Gillespie Algorithm.
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Intracellular dynamics of HIV and IFN in infected CD4" T cell
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Figure 5: Intracellular HIV replication in productively infected cell with
Vine = 2 integrated proviruses.
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Numerical simulations of HIV infection dynamics in LN
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Figure 6: Extracellular fields of (a) HIV virions, (b) IFN molecules, and (c) the
spatial distribution of cells (dendritic cell, infected and uninfected CD4" T

cells, specific and nonspecific CD8' T cells) at 48 hours postinfection.

(d) Temporal kinetics of total number of HIV virions in the computational

domain during 48 hours postinfection at various immune conditions. 35



- The spatial population dynamics of immune cells and humoral
factors in lymphoid organs modelled with Newton’s second law
and reaction-diffusion equations, respectively calibrated using
experimental data for 2D consideration.

- For intracellular processes of immune cell fate regulation, both
deterministic and related stochastic models are developed in
pairs, that describe HIV replication and antiviral IFN response.

- The model is used to predict the necessary conditions on CTL
frequencies and motility which should be induced by HIV
vaccine to block local bursts of HIV infection in lymph nodes,
and the effect of antiviral IFN response on HIV transmission
dynamics.

The work is supported by grant from Russian Science Foundation 18-11-00171 36



Further research for development of the multiscale

Effector
CDB+ T cell

Mature
CDas T cell Activated APC

MHC,

HIV virons.
IENA

IFN signaling
molecules  Replication
IL2signaing '@ @
molecules o —
.o

HIVDNA

Proiferation|

Grebennikov D.S. et al. Mathematical Modeling of the Intracellular Regulation of Imnmune Processes. Molecular Biology, 2019, 53(5), 815-829.,

Grebennikov D. et al. Critical Issues in Modelling Lymph Node Physiology. Computation, 2017, 5(1), 3.
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Thank you for your attention!
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