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Introduction

Oxygen concentration in the blood (ϕ), plasma (φ), and tissue (θ)

Relation between the blood (ϕ) and plasma (φ) oxygen concentrations:

ϕ = f(φ) := φ+
bφr

φr + c
, Hill coefficient : r = 2.73.

Relation between the partial pressure of oxygen and concentration:

φ, θ = Soluability · PO2.
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Overview of publications

Numerical simulations under some simpli�cations: T.W. Secomb et al (1989, 1993,
1994,.. etc.), R. Valabregue et al (2003) etc.

Homogenization the oxygen transport problem

A.-R.A. Khaled, K. Vafai (2003):
The homogenization approach was applied to describe the heat transfer in tissue
including the system of blood vessels.

S.-W. Su (2011):
A two phase continuum model the oxygen transport in the brain is proposed.

A.E. Kovtanyuk, A.Yu. Chebotarev et al (2018, 2019):
Convergence of an iterative algorithm for steady-state oxygen transport model is
studied and a unique solvability is proven.
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Problem formulation

Continuum model of oxygen transport:

∂ϕ/∂t− α∆ϕ+ v · ∇ϕ = G, ∂θ/∂t− β∆θ = −γG− µ, (1)

ϕ|Γ1 = ϕb, θ|Γ1 = θb, ∂nϕ = ∂nθ|Γ2 = 0, (2)

ϕ|t=0 = ϕ0, θ|t=0 = θ0. (3)

µ � tissue oxygen metabolic (consumption) rate
µ � (Michaelis-Menten equation: µ = µ(θ) := µ0θ/(θ + θ50))

G � local exchange at blood-tissue interface, G = a(θ − φ)
G � (Hill equation: ϕ = f(φ) := φ+ bφr/(φr + c);
G � (Hill equation: φ = g(ϕ) := f−1(ϕ) � monotonic function)
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Problem formalization

Model domain:

Sets and spaces:

Q = Ω× (0, T ),

V = H1(Ω), V ′ � adjoint space of V ,

W = {y ∈ L2(0, T ;V ) : y′ ∈ L2(0, T, V ′)}.
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Problem formalization

Suppose that the model data satisfy the following conditions:

(i) 0 ≤ ϕb ≤M, 0 ≤ θb ≤ g(M),

(ii) ∃ ϕ̃, θ̃ ∈ L∞(0, T ;H2(Ω)) :

ϕ̃t, θ̃t ∈ L2(Q), ∂nϕ̃, ∂nθ̃|Γ2 = 0, ϕ̃|Γ1 = ϕb, θ̃|Γ1 = θb,

(iii) v ∈ L∞(0, T ;H1(Ω)), ∇ · v = 0; v · n|Γ2
= 0.

De�ne operator A : V → V ′ and functions f1,2 ∈ L2(Q):

(Au, v) = (∇u,∇v), ∀u, v ∈ V ; f1 = −ϕ̃t + α∆ϕ̃, f2 = −θ̃t + β∆θ̃.

De�nition A pair ϕ = ϕ̃+ ψ, θ = θ̃ + ζ is a weak solution of (1)-(3) if ψ, ζ ∈W and

ψ′ + αAψ + v · ∇ϕ+ a (g(ϕ)− θ) = f1 a.e. on (0, T ), (4)

ζ′ + βAζ + µ(θ) + γa (θ − g(ϕ)) = f2 a.e. on (0, T ), (5)

ϕ|t=0 = ϕ0, θ|t=0 = θ0. (6)
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An iterative algorithm

De�ne the operators F1, F2 : L∞(Q)→W such that ψ = F1(ζ) if ψ is a solution of
the problem

ψ′ + αAψ + v · ∇ϕ+ a (g(ϕ)− θ) = f1 a.e. on (0, T ), ψ|t=0 = ϕ0 − ϕ̃|t=0, (7)

where θ = θ̃ + ζ, ϕ = ϕ̃+ ψ. Accordingly, ζ = F2(ψ) if ζ is a solution of the problem

ζ′ + βAζ + µ(θ) + γa (θ − g(ϕ)) = f2 a.e. on (0, T ), ζ|t=0 = θ0 − θ̃|t=0. (8)

The unique solvability of the problem (7) for given ζ and of the problem (8) for given
ψ takes place due to the monotonicity of nonlinearities (Lions J.L., 1969).

Notice that if ϕ∗ = ϕ̃+ ψ∗, θ∗ = θ̃ + ζ∗ is a weak solution of the problem (1)�(3),
then ψ∗ = F1(F2(ψ∗)) and ζ∗ = F2(F1(ζ∗)).
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An iterative algorithm

Lemma 1 Let the conditions (i)�(iii) hold. Then

0 ≤ ϕ ≤M if 0 ≤ θ ≤ g(M); 0 ≤ θ ≤ g(M) if 0 ≤ ϕ ≤M.

Lemma 2 Let the conditions (i)�(iii) hold. Then

F1(ζ1) ≤ F1(ζ2) if ζ1 ≤ ζ2; F2(ψ1) ≤ F2(ψ2) if ψ1 ≤ ψ2.
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An iterative algorithm

De�ne the functional sequences in a recurrent way:

θk = θ̃ + ζk, ϕk = ϕ̃+ ψk,

ζ0 = −θ̃, ψk = F1(ζk), ζk+1 = F2(ψk), k = 0, 1, 2, ... . (9)

Due to Lemma 1, the following inequality holds: 0 = θ0 ≤ θ1. Therefore,
θ1 = θ̃ + F2(F1(θ0 − θ̃)) ≤ θ̃ + F2(F1(θ1 − θ̃)) = θ2 and then accordingly

0 ≤ θk ≤ θk+1 ≤ g(M), k = 0, 1, 2, ...

Analogously, ϕ0 = ϕ̃+ F1(θ0 − θ̃) ≤ ϕ̃+ F1(θ1 − θ̃) = ϕ1, and then

0 ≤ ϕk ≤ ϕk+1 ≤M, k = 0, 1, 2, ...
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An iterative algorithm

From the monotonicity and boundedness of the sequences ϕk, θk, from the Levi's
theorem, it follows the existence of the functions θ∗, ϕ∗ ∈ L∞(Q) ∩W such that

θk → θ∗, ϕk → ϕ∗ a.e. in Q, weakly in W. (10)

The convergence results (10) make it possible in the standard way to pass to the limit
in the equalities de�ning ϕk, θk. The passage to the limit in nonlinear terms is
guaranteed by their monotonicity. Thus, we conclude that ϕ∗, θ∗ is a weak solution of
the problem (1)�(3). Moreover, it is possible to prove the uniqueness of the solution.

Theorem Let the conditions (i)�(iii) hold. Then the non-decreasing sequence {ϕk, θk}
de�ned by (9) converge a.e. in Q to a unique weak solution of the problem (1)�(3).
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Numerical experiments

Numerical example involves a 2D square domain with the area of 1.8mm × 1.8mm.
It contains 64 holes corresponding to 32 inlets and 32 outlets that are interpreted as
arteriolar and venular ends of the capillary network.

The absolute velocity (mm/s)

The velocity �eld v is computed in advance using the Stokes equation. To solve the
Stokes equation, following Rosenblum (1969), velocities of 3.4 mm/s and 1.7 mm/s
are set at the ends of arterioles and venules, respectively. Note that we use the Stokes
equation to obtain an example of velocity �eld satisfying the speci�ed boundary
conditions in the considered complex domain. Nevertheless, in most of the domain, the
velocity norm computed lies in the range of acceptable values (from 0.3 to 1.7 mm/s),
which is necessary for normal functioning of brain cells (see Ivanov et al. (1981)).
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Numerical experiments

The tissue oxygen concentration at 1 s (mM)
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Numerical experiments

The tissue oxygen concentration at 2 s (mM)
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Numerical experiments

The tissue oxygen concentration at 3 s (mM)
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Numerical experiments

The tissue oxygen concentration at 7 s (mM)
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Conclusion

1. Convergence of the iterative algorithm for �nding a solution of the initial
boundary-value problem is proven.

2. Numerical analysis was conducted. Convergence and fast stabilization∗ are
demonstrated.

∗ A rapid stabilization (within 6-7 seconds) of oxygen distribution in tissue is
observed. More fast stabilization (within 3-4 seconds) occurs in the blood fraction.

THANK YOU FOR ATTENTION!
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