# Experimental study of the flow helicity in blood vessel models with MRI

A. K. Khe, V. S. Vanina, A. A. Cherevko, D. V. Parshin,
A. V. Chebotnikov, A. V. Boiko, A. A. Tulupov, A. P. Chupakhin Lavrentyev Institute of Hydrodynamics, Novosibirsk

X Conference on Mathematical Models and Numerical Methods in Biomathematics November 6–8, 2018, INM RAS, Moscow, Russia

Supported by the Russian Science Foundation (Grant No. 17-11-01156)

# Introduction

- Non-invasive methods:
  - Doppler ultrasonography
  - Computed tomography (CT)
  - Magnetic resonance imaging (MRI)
- V. P. Kulikov, R. I. Kirsanov, 2013
- A. D. Yukhnev, Ya. A. Gataulin, et al., 2015
- A. Frydrychowicz, et al., 2009
- M. Markl, et al., 2010
- L. A. Bokeria, et al., 2013
- and others...

# Aim

- Investigation of the velocity field of physiological flows with MRI:
  - Development of the research protocol.
  - Development of the post-processing software.
  - Comparison with the numerical simulations.

# Experimental setup

- MR scanner Philips Ingenia 3T (ITC SB RAS)
- Programmable pump CompuFlow 1000MR
- Silicone models
- Blood mimicking liquid

### Magnetic resonance scanner



# Gradient coils













Υ



## **MRI** schematics



# CompuFlow 1000 MR



Shelley Medical Imaging Technologies

- Programmable flow rates
- Fluid: glycerol solution (density 1000 kg/m<sup>3</sup>, viscosity 0,004 Pa·s)

# Models



Silicone tube with swirl generator



Giant aneurysm on internal carotid artery



Common carotid artery bifurcation (Shelley Medical Imaging Technologies)

# 4D Qflow by Philips

**DICOM** data

### Data structure

- Each measurement in 4D-Qflow results in 4 series of DICOM images:
  - PCA/M, PCA/P-RL, PCA/P-FH, PCA/P-AP
- Each series consists of spatial-temporal slices with values of two types (density and velocity):
  - In total: 2 × (time steps) × (number of slices)
- Each DICOM image: metadata and data

### Image structure

- Metadata:
  - TimeStepNumber = "(2001,1008)"
  - SliceNumber = "(2001,100A)"
  - ImageType = "(2005,1011)"
  - "ImagePosition"
  - "ImageOrientation"
  - "SlicesSpacing"
  - "SliceLocation"
  - "PixelSpacing"
  - "TriggerTime"
- Data: matrix with one velocity component

# Flow parameters

- Metadata:
  - TimeStepNumber number of the temporal step
  - "ImagePosition" coordinates of the pixel (1, 1)
  - "ImageOrientation" row and column unit vectors
  - "PixelSpacing", "SlicesSpacing" (dy, dx, dz)
  - "TriggerTime" list of time moments

# Reconstruction of the velocity field

• Each series contains one velocity component



"ImageOrientation" — rotation matrix (change of coordinates)

# DICOM images



Density image

Velocity component

# Post-processing

Results

| Session 1 |                     |                   |                         |
|-----------|---------------------|-------------------|-------------------------|
| 1         | Swirl generator v.1 | 96x96x7 (280)     |                         |
| Session 2 |                     |                   |                         |
| a-1000    | Swirl generator v.1 | 160x160x11 (440)  |                         |
| b-1100    | Swirl generator v.1 | 160x160x11 (440)  |                         |
| c-1300    | Swirl generator v.1 | 240x240x20 (800)  |                         |
| Session 3 |                     |                   |                         |
| 1         | Swirl generator v.1 | 96x96x7 (280)     |                         |
| 2         | Swirl generator v.1 | 160x160x11 (440)  |                         |
| Session 4 |                     |                   |                         |
| 2a-800    | Swirl generator v.1 | 96x96x7 (280)     | 18+/-3                  |
| 2b-900    | Swirl generator v.1 | 160x160x11 (440)  | 18+/-3                  |
| 2c-1000   | Swirl generator v.1 | 240x240x20 (800)  | 18+/-3                  |
| 3a-800    | Swirl generator v.2 | 96x96x7 (280)     | 18+/-3                  |
| 3b-900    | Swirl generator v.2 | 160x160x11 (440)  | 18+/-3                  |
| Session 5 |                     |                   |                         |
| 1         | Aneurysm model      | 176x176x25 (1000) | 12 +/- 3 ml, f = 0.5 Hz |
| 2         | Aneurysm model      | 176x176x25 (1000) | 15 +/- 3 ml, f = 0.5 Hz |
| Session 6 |                     |                   |                         |
| 1         | Aneurysm model      | 176x176x25 (1200) | 15+/-3 ml, f = 0.5 Hz   |
| 2         | CCA bifurcation     | 96x96x7 (280)     | 15+/-3 ml, f = 0.5 Hz   |
| 3         | CCA bifurcation     | 160x160x11 (440)  | 15+/-3 ml, f = 0.5 Hz   |

# Flow in elastic tube

- Silicone tube with a swirl generator
- Flow rate:  $18 + 3 \sin(\pi t) \text{ ml/s}, f = 0.5 \text{ Hz}.$

| 3D matrix  | Time<br>steps | Voxel, mm³     | Domain, mm <sup>3</sup> | Files   |
|------------|---------------|----------------|-------------------------|---------|
| 96×96×7    | 20            | 1.56×1.56×1.5  | 150×150×10.5            | 4 × 280 |
| 160×160×11 | 20            | 0.94×0.94×1.25 | 150×150×13.75           | 4 × 440 |
| 240×240×20 | 20            | 1.25×1.25×1.25 | 300×300×25              | 4 × 800 |

### Matrix 96×96×7



# Axial velocity



Ζ

Х

٧



z = 1

z = 7

x = 5

x = 9

21

20

40

60

80

96

# Transversal velocity

15

10

5

0

-5

-10

-15





# Streamlines for transversal velocity component









y = 88

### Matrix 160×160×11





# Axial velocity





# Transversal velocity (x component)





# Transversal velocity

10

5

0

-5

-10





# Streamlines for transversal velocity component





28



# CCA bifurcation



| 3D matrix | Time<br>steps | Voxel, mm <sup>3</sup> | Domain, mm <sup>3</sup> | Files   |
|-----------|---------------|------------------------|-------------------------|---------|
| 96×96×7   | 20            | 1.56×1.56×1.5          | 150×150×10.5            | 4 × 280 |

# Velocity field



# Velocity field: v<sub>7</sub>









# Aneurysm model

- Silicone model of cerebral blood vessels with aneurysm
- Flow rate: 12 ± 3 ml/s
- Frequency: 0,5 Hz



| 3D matrix  | Time<br>steps | Voxel, mm³     | Domain, mm <sup>3</sup> | Files    |
|------------|---------------|----------------|-------------------------|----------|
| 176×176×25 | 20            | 0.86×0.86×1.25 | 150.6×150.6×31.25       | 4 × 1000 |

## Matrix 176×176×25





# Streamlines for transversal velocity component



y = 40

### Flow rate in tube



# Conclusion

- Possibility to study swirling (helical) character of the flow with magnetic resonance imaging is shown.
- The scanning protocol is planned to be used in medical examinations for studying the flow structure in blood vessel, in particular, in cerebral arteries.
- This allows one to estimate not only volumetric flow rate and linear velocity but also secondary (rotational) flows.