Сегментация КТ-изображений брюшной полости методом текстурного анализа

Александра Юрова

Сеченовский университет

6 ноября 2018 г.

А. Юрова

Сегментация КТ-изображений

6 ноября 2018 г. 1 / 47

• Сегментация органов брюшной полости методом текстурного анализа

47 ▶

- Сегментация органов брюшной полости методом текстурного анализа
 - Введение

47 ▶

- Сегментация органов брюшной полости методом текстурного анализа
 - Введение
 - Анализ текстуры КТ-изображений

- Сегментация органов брюшной полости методом текстурного анализа
 - Введение
 - Анализ текстуры КТ-изображений
 - Получение трёхмерных моделей органов брюшной полости

- Сегментация органов брюшной полости методом текстурного анализа
 - Введение
 - Анализ текстуры КТ-изображений
 - Получение трёхмерных моделей органов брюшной полости
 - Проверка метода на реальных данных

Сегментация медицинских изображений

www.itksnap.org

Сегментация КТ-изображений

Примеры воксельных моделей тела человека

Сегментация в ручном режиме

(a) Модель тела мужчины 682 × 405 × 1871

(b) Модель тела женщины 682 × 405 × 1871

4 / 47

Основные проблемы автоматизации процесса сегментации КТ-изображений

- большое разнообразие снимков, полученных на различных устройствах с использованием различных протоколов
- наличие шума, артефактов
- наличие индивидуальных анатомических особенностей у каждого пациента
- пересечение диапазонов интенсивностей граничащих органов (наличие "протеканий") ⇒ сложно детектировать границы органов

Пример КТ-изображения брюшной полости

Источник изображения: набор данных Brebix из библиотеки изображений Osirix http://www.osirix-viewer.com/resources/dicom-image-library/

А. Юрова

Сегментация КТ-изображений

6 ноября 2018 г. 6 / 47

Примеры КТ-изображений печени

(с) Норма

(а) Большое содержание жира и метастазы (b) Незначительное превышение содержания жира (d) Гемохроматоз

Индивидуальные различия в плотности паренхимы печени (иллюстрация из Prokop M., Galanski M., Schaefer-Prokop C. Ganzkörper-Computertomographie: Spiral- und Multislice-CT, Stuttgart: Thieme, 2007),

А. Юрова

Сегментация КТ-изображени

6 ноября 2018 г.

7 / 47

Сегментация органов брюшной полости методом текстурного анализа

∃ ► < ∃ ►</p>

< A > <

- 34

Сегментация органов брюшной полости методом текстурного анализа

• удаление шумов

3 × 4 3 ×

47 ▶

- 34

- 3

∃ ► < ∃ ►</p>

• анализ текстурных признаков

• удаление шумов

Сегментация органов брюшной полости методом текстурного анализа

- 3

- получение моделей анатомических структур
- анализ текстурных признаков
- удаление шумов

Сегментация органов брюшной полости методом текстурного анализа

Для сегментации каких органов предназначен разработанный метод?

Для сегментации каких органов предназначен разработанный метод? Паренхиматозные органы

- печень
- селезёнка

Для сегментации каких органов предназначен разработанный метод? Паренхиматозные органы

- печень
- селезёнка

Полые органы

- желудок
- желчный пузырь
- мочевой пузырь

Для сегментации каких органов предназначен разработанный метод? Паренхиматозные органы

- печень
- селезёнка

Полые органы

- желудок
- желчный пузырь
- мочевой пузырь

Органы с равномерной текстурой

Органы с равномерной текстурой

b) Gallbladder

c) Spleen

d) Stomach

Источник КТ-изображений: Институт диагностической и интервенционной радиологии, Росток Германия 🔊 🤉 🥟

Органы с равномерной текстурой

Равномерная текстура — окрестности всех вокселей визуально подобны друг другу.

Источник КТ-изображений: Институт диагностической и интервенционной радиологии, Росток- Германия 🔿 🤈 🗠

Органы с равномерной текстурой

Равномерная текстура — окрестности всех вокселей визуально подобны друг другу.

Источник КТ-изображений: Институт диагностической и интервенционной радиологии, Росток- Германия 🔿 🤈 🗠

Равномерная текстура — окрестности всех вокселей визуально подобны друг другу.

3

12 / 47

Равномерная текстура — окрестности всех вокселей визуально подобны друг другу.

• размер окрестности до $7 \times 7 \times 7$

Равномерная текстура — окрестности всех вокселей визуально подобны друг другу.

• размер окрестности до $7 \times 7 \times 7$

Равномерные текстуры

12 / 47

Равномерная текстура — окрестности всех вокселей визуально подобны друг другу.

• размер окрестности до 7 × 7 × 7

Равномерные текстуры

Неравномерные текстуры

А. Юрова

Сегментация КТ-изображений

Некоторые ограничения на входные данные

- венозная фаза контрастного усиления:
 - усиление контрастности изображения печени
 - однородность паренхимы селезёнки

Аксиальный срез КТ-изображения

Артериальная фаза

Венозная фаза

Источник изображений: набор данных Brebix из библиотеки изображений Osirix http://www.osirix-viewer.com/resources/dicom-image-library/

А. Юрова

Сегментация КТ-изображений

6 ноября 2018 г.

13 / 47

Некоторые ограничения на входные данные

- пероральное контрастирование ЖКТ
 - улучшение контрастрости желудка
 - улучшение контрастности тонкой кишки

Контрастирование желудка (ниже к.в. — контрастное вещество)

негативное к.в.

позитивное к.в.

отсутствие к.в.

Источник КТ-изображений: Институт диагностической и интервенционной радиологии, Росток, Германия

Некоторые ограничения на входные данные

• голодание пациентов перед обследованием

Наполненность желчного пузыря

без голодания

при голодании

Источник КТ-изображений: Институт диагностической и интервенционной радиологии, Росток, Германия

А. Юрова

Сегментация КТ-изображений

R.Haralick, K.Shanmugam: Textural Features for Image Classification. 1973

Матрица смежности $P_{\mathbf{d}}$: значение элемента $p_{\mathbf{d}}(i,j)$ равно числу соседств пикселей с интенсивностью i с пикселями с интенсивностью j, где соседство определяется через вектор смещения \mathbf{d} между вокселями v_p и v_q ($v_p = v_q + \mathbf{d}$)

< 17 ×

R.Haralick, K.Shanmugam: Textural Features for Image Classification. 1973

Матрица смежности $P_{\mathbf{d}}$: значение элемента $p_{\mathbf{d}}(i,j)$ равно числу соседств пикселей с интенсивностью i с пикселями с интенсивностью j, где соседство определяется через вектор смещения \mathbf{d} между вокселями v_p и v_q ($v_p = v_q + \mathbf{d}$)

< 47 ▶

R.Haralick, K.Shanmugam: Textural Features for Image Classification. 1973

Матрица смежности $P_{\mathbf{d}}$: значение элемента $p_{\mathbf{d}}(i,j)$ равно числу соседств пикселей с интенсивностью i с пикселями с интенсивностью j, где соседство определяется через вектор смещения \mathbf{d} между вокселями v_p и v_q ($v_p = v_q + \mathbf{d}$)

< 47 ▶

R.Haralick, K.Shanmugam: Textural Features for Image Classification. 1973

Матрица смежности $P_{\mathbf{d}}$: значение элемента $p_{\mathbf{d}}(i,j)$ равно числу соседств пикселей с интенсивностью i с пикселями с интенсивностью j, где соседство определяется через вектор смещения \mathbf{d} между вокселями v_p и v_q ($v_p = v_q + \mathbf{d}$)

< 47 ▶

R.Haralick, K.Shanmugam: Textural Features for Image Classification. 1973

Матрица смежности $P_{\mathbf{d}}$: значение элемента $p_{\mathbf{d}}(i,j)$ равно числу соседств пикселей с интенсивностью i с пикселями с интенсивностью j, где соседство определяется через вектор смещения \mathbf{d} между вокселями v_p и v_q ($v_p = v_q + \mathbf{d}$)

$$0 \leq p_{\mathbf{d}}(i,j) \leq 1, \quad \forall i,j, \qquad \sum_{i=0}^{g} \sum_{j=0}^{g} p_{\mathbf{d}}(i,j) = 1$$

• Энергия

$$f_1 = \sum_i \sum_j \{p(i,j)\}^2$$

• Контраст

$$f_{2} = \sum_{n=0}^{g-1} n^{2} \Big\{ \sum_{\substack{i=1 \ |i-j|=n}}^{N_{g}} \sum_{\substack{j=1 \ |i-j|=n}}^{N_{g}} p(i,j) \Big\}$$

• Локальная равномерность

$$f_3 = \sum_i \sum_j \frac{1}{1 + (i - j)^2} p(i, j)$$

$$f_4 = -\sum_i \sum_j p(i,j) \log(p(i,j)), p(i,j) > 0$$

А. Юрова

B → B

17 / 47

 матрицы смежности строятся по некоторой окрестности каждого вокселя КТ-изображения:

рассматривается окрестность r imes r imes r, где r > 1 — нечётное число

Пример воксельной окрестности 3х3х3

• матрица смежности P_{δ} строится с учётом нескольких смещений \mathbf{d}_k :

$$P_{\delta}(i,j) = \frac{1}{N} \left(\sum_{k=1}^{N} P_{\mathbf{d}_k}(i,j) \right). \tag{1}$$

Совокупность всех типов смещений $\mathbf{d}_{\mathbf{k}}$ для каждого вокселя называется шаблоном

19 / 47

В простейшем случае рассматривается б типов смещений \mathbf{d}_k

 $\bm{d}_{5,6} = (0,0,\pm 1)$

Для внутренних вокселей:

Для граничных вокселей:

Сегментация КТ-изображений

Результаты расчётов энтропии по КТ-изображениям (4 разных набора): чем светлее воксели, тем выше значение энтропии

Источник исходных КТ-изображений: Институт диагностической и интервенционной радиологии, Росток, Германия

А. Юрова

Сегментация КТ-изображений

6 ноября 2018 г. 21 / 47

Значение энтропии

$$ENT_{\delta} = -\sum_{\substack{i=0\\p_{\delta}(i,j)\neq 0}}^{g} \sum_{j=0}^{g} p_{\delta}(i,j) \ln (p_{\delta}(i,j))$$

в окрестности вокселя максимально, если все пары соседних по шаблону вокселей в этой окрестности различны, и равно ln n(r), где n(r) — удвоенное число связей окрестности.

Важные особенности:

- значение энтропии для вокселей, принадлежащих органам с равномерной текстурой, низкое
- значение энтропии для вокселей, принадлежащих границам, высокое

▶ ▲ 臣 ▶ 臣 • • • • •

Анализ текстурных признаков КТ-изображений Исходное КТ-изображение

А. Юрова

Анализ текстурных признаков КТ-изображений Результат расчёта энтропии по КТ-изображению

Бинарная маска, построенная по значения энтропии

Бинарная маска, полученная по значениям энтропии

Размер окрестности r	$max(ENT_{\delta})$	Значение порога
1	4.68	3
2	6.39	2

Источник КТ-изображения: Сеченовский университет

А. Юрова

24 / 47

Приближение сегментации при помощи эволюционирующей поверхности

(Изображение из руководства пользователя ITK SNAP)

Метод функции уровня (реализация из библиотеки ITK)

 $\psi(\mathbf{x}, t) - \phi$ ункция уровня

 $\Gamma(t) = \{\psi(\mathbf{x}, t) = 0\}$ — замкнутая поверхность нулевого уровня, которая разделяет всё пространство на две части:

$$\psi(\mathbf{x},t)>$$
 0, $\psi(\mathbf{x},t)<$ 0

 ψ изменяется по следующему закону:

$$\psi_t = \alpha g_I(\mathbf{x}) |\nabla \psi| + \beta \kappa |\nabla \psi|$$

 $g_I(\mathbf{x})$ — поле скоростей продвижения (в предложенном методе бинарная маска)

 $\kappa = div$ **n** — кривизна поверхности

 $\alpha, \beta \in [0; 1]$ — константы

А. Юрова

Получение трёхмерных моделей органов Экспериментально подобранные значения параметров:

 $\alpha \in$ [0.1; 0.25], $\beta \in$ [0.85; 1].

Пример сегментации селезёнки:

а. $\alpha = 1.0$, $\beta = 0.2$ — протекание ("бутылочное горлышко") b. $\alpha = 0.25$, $\beta = 0.95$ — корректная сегментация Источник КТ-изображения: Сеченовский университет

А. Юрова

Применение метода активных контуров для получения геометрической модели селезёнки

 $\alpha = \mathbf{0.2}, \beta = \mathbf{0.95}$

Danilov A., Pryamonosov R., Yurova A. Image Segmentation for Cardiovascular Biomedical Applications at Different Scales // Computation. – 2016. – V. 4, No 3

А. Юрова

Сегментация КТ-изображений

Применение метода активных контуров для получения геометрической модели печени

 $\alpha = \mathbf{0.2}, \beta = \mathbf{0.95}$

Danilov A., Pryamonosov R., Yurova A. Image Segmentation for Cardiovascular Biomedical Applications at Different Scales // Computation. — 2016. — V. <u>4</u>, No <u>3</u>

А. Юрова

Сегментация КТ-изображений

Пример построенной воксельной модели брюшной полости

а. Аксиальный срез КТ изображения (некоторые структуры просегментированы) b. Воксельная модель

Оценка корректности работы метода

- качественная оценка эксперты оценивают сегментацию предложенным методом по разработанной шкале
- количественная оценка сравнение с референтными моделями

Изображение из Campadelli P., Casiraghi E., Pratissoli S., Lombardi G. Automatic Abdominal Organ Segmentation from CT images // Electronic Letters on Computer Vision and Image Analysis. — 2009. — Jan. — Vol. 8, no. 1. — P. 1–14.

31/47

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Качественная оценка корректности работы метода

Грубые и негрубые ошибки сегментации

 $\frac{N_{def}}{N_{total}} = \frac{120}{539} \approx 0.223 \qquad \frac{N_{def}}{N_{total}} = \frac{70}{308} \approx 0.227 \qquad \frac{N_{def}}{N_{total}} = \frac{16}{487} \approx 0.033$

Источник изображений: Институт диагностической и интервенционной радиологии, Росток, Германия

А. Юрова

6 ноября 2018 г. 32 / 47

Качественная оценка корректности работы метода

Шкала для оценивания результатов сегментации предложенным методом

Оценка	Корректность сегментации	Качество сегментации
1	корректная	отличное
2	1–3 негрубых ошибок	хорошее
3	4-6 негрубых ошибок или 1 грубая	удовлетворительное
	и 0–3 негрубых ошибок	
4	все остальные случаи	неудовлетворительное

B → B

Качественная оценка корректности работы метода

Средние значения оценок тремя экспертами сегментаций некоторых органов по КТ-данным 20 различных пациентов

	Метод текстурного анализа				Tera Recon
N	Селезёнка	Желудок	Желчный пузырь	Печень	Печень
Avg ₁	1	2.56	1.1	1.75	2.6
Avg ₂	1.05	2.78	1	1.65	2.6
Avg ₃	1	2.44	1	1.8	2.85

Оценка корректности работы метода

Сравнение результатов сегментации печени предложенным методом с результатами сегментации коммерческим пакетом компании TeraRecon

Количественная оценка корректности работы метода

Референтная сегментация: $S_g = \{S_g^1, S_g^2\}.$

Полученная сегментация: $S_t = \left\{S_t^1, S_t^2
ight\}.$

• Метрики, учитывающие пересечения сегментаций

$$DICE = \frac{2 \left| S_{g}^{1} \cap S_{t}^{1} \right|}{\left| S_{g}^{1} \right| + \left| S_{t}^{1} \right|}, \quad JAC = \frac{\left| S_{g}^{1} \cap S_{t}^{1} \right|}{\left| S_{g}^{1} \cup S_{t}^{1} \right|}$$

• Метрики, учитывающие соотношения объёмов

$$VS = 1 - rac{||S_t^1| - |S_g^1||}{|S_t^1| + |S_g^1|}.$$

Taha A. A., Hanbury A. Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool // BMC Medical Imaging. -2015. - P. 15-29.

Количественная оценка корректности работы метода VISCERAL — VISual Concept Extraction challenge in RAdioLogy Organ Segmentation and Landmark Detection Benchmark http://www.visceral.eu

Среднее значение коэффициента *DICE* для результатов сегментаций мед. изображений различными группами в рамках конкурса Anatomy1

Группа	Печень	Селезёнка	Желч. пузырь	Моч. пузырь
Gass	0.900	0.802	0.334	0.676
Jia	0.891	—	—	
Jiménez	0.918	0.852	0.566	0.700
Kéchichian	0.806	0.768	0.281	0.718
Spanier	0.747	0.690	—	
Wang	0.898	0.873	—	0.805
Предл. метод	0.927	0.877	0.654	0.885

37 / 47

Выводы

- выявлены характерные особенности отображения органов брюшной полости на КТ-снимках, обусловленные их строением
- разработан и реализован программно метод для сегментации печени, селезёнки, желчного пузыря, желудка. Преимущества по отношению к другим методам:
 - устойчив к различиям в диапазонах интенсивности для конкретных органов у отдельных пациентов
 - не зависит от индивидуальных анатомических особенностей пациентов
 - универсален для сегментации сразу нескольких органов брюшной полости

Полезная литература

- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics 1973, 3, 610–621.
- Handels H. Medizinische Bildverarbeitung. Leipzig, 2004.
- M. Hofer. CT-Kursbuch. 9. Auflage. 2016
- P.Campadelli, E.Casiraghi, S.Pratissoli, G.Lombardi. Automatic Abdominal Organ Segmentation from CT images. Electronic Letters on Computer Vision and Image Analysis 8(1):1-14, 2009
- Su X. G., Eckerman K. F. Handbook of Anatomical Models for Radiation Dosimetry. Boca Raton : CRC Press, 2009. 721 p.

Α.	ю	ро	ва

Α.	ю	ро	ва

Автоматическое задание стартовой области

spleen

kidneys

Campadelli P., Casiraghi E., Pratissoli S., Lombardi G. Automatic Abdominal Organ Segmentation from CT images // Electronic Letters on Computer Vision and Image Analysis. — 2009. — Jan. — Vol. 8, no. 1. — P. 1–14.

6 ноября 2018 г.

42 / 47

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Автоматическое задание стартовой области

исходное КТ-изображение

бинарная маска

карта расстояний

Источник изображений: Институт диагностической и интервенционной радиологии, Росток, Германия

43 / 47

Расчёт энтропии на центральном процессоре

Время расчёта энтропии по различным окрестностям на центральном процессоре

Number of voxels	Computation time, c		
Number of Voxers	$3 \times 3 \times 3$ vox	$5 \times 5 \times 5$ vox	$7 \times 7 \times 7$ vox
2097152	47	106	453
4194304	95	252	1072
8388608	201	528	2315
16777216	484	1085	4804
33554432	947	2398	10091
67108864	1775	5040	20206

Расчёт энтропии на графическом ускорителе

Время расчёта энтропии по окрестности $3 \times 3 \times 3$ на

- CPU Intel Core i7
- GPU NVIDIA GeForce GT 740M

Number of voxels you	Time, c		
	CPU	GPU	
1048576	16	3	
2097152	41	7	
4194304	95	17	
8388608	198	37	
16777216	413	77	
33554432	852	155	
67108864	1662	219	
134217728	4274	620	

Валидация метода: количественная оценка

• Метрика, учитывающая удаление ошибочно просегментированных вокселей от границы (Distance Map Metrics)

$$DMM = \frac{\alpha \left| S_{g}^{1} \cap S_{t}^{1} \right|}{\alpha \left| S_{g}^{1} \cap S_{t}^{1} \right| + \beta \sum_{i=1}^{n} M_{diff,w}},$$

$$lpha = 1, \ eta = 1 \ (DMM_1)$$

 $lpha = 2, \ eta = 1 \ (DMM_2)$

 $M_{diff,w}$ — маска, содержащая штрафы за удаление от границы для ошибочно просегментированных вокселей

Выводы

- выявлены характерные особенности отображения органов брюшной полости на КТ-снимках, обусловленные их строением
- разработан и реализован программно метод для сегментации печени, селезёнки, желчного пузыря, желудка. Преимущества по отношению к другим методам:
 - устойчив к различиям в диапазонах интенсивности для конкретных органов у отдельных пациентов
 - не зависит от индивидуальных анатомических особенностей пациентов
 - универсален для сегментации сразу нескольких органов брюшной полости