Stable numerical schemes for flows in time-dependent domains

Yuri Vassilevski ${ }^{1,2,3}$
Maxim Olshanskii ${ }^{4}$ Alexander Danilov ${ }^{1,2,3}$
Alexander Lozovskiy ${ }^{1}$ Victoria Salamatova ${ }^{1,2,3}$

${ }^{1}$ Marchuk Institute of Numerical Mathematics RAS
${ }^{2}$ Moscow Institute of Physics and Technology
${ }^{3}$ Sechenov University
${ }^{4}$ University of Houston
The 10th Workshop on Mathematical Models and Numerical Methods in Biology and Medicine

November 6, 2018, Moscow
The work was supported by the Russian Science Foundation

Fluid-Structure Interaction

Fluid-Structure Interaction problem

Prerequisites for FSI

- reference subdomains Ω_{f}, Ω_{s}
- transformation $\boldsymbol{\xi}$ maps Ω_{f}, Ω_{s} to $\Omega_{f}(t), \Omega_{s}(t)$
- \mathbf{v} and \mathbf{u} denote velocities and displacements in $\widehat{\Omega}:=\Omega_{f} \cup \Omega_{s}$
- $\boldsymbol{\xi}(\mathbf{x}):=\mathbf{x}+\mathbf{u}(\mathbf{x}), \mathbf{F}:=\nabla \boldsymbol{\xi}=\mathbf{I}+\nabla \mathbf{u}, J:=\operatorname{det}(\mathbf{F})$
- Cauchy stress tensors σ_{f}, σ_{s}
- pressures p_{f}, p_{s}
- density ρ_{f} is constant

Fluid-Structure Interaction problem

Universal equations in reference subdomains
Dynamic equations

$$
\frac{\partial \mathbf{v}}{\partial t}=\left\{\begin{aligned}
\rho_{s}^{-1} \operatorname{div}\left(J \sigma_{s} \mathbf{F}^{-T}\right) & \text { in } \Omega_{s} \\
\left(J \rho_{f}\right)^{-1} \operatorname{div}\left(J \sigma_{f} \mathbf{F}^{-T}\right)-\nabla \mathbf{v}\left(\mathbf{F}^{-1}\left(\mathbf{v}-\frac{\partial \mathbf{u}}{\partial t}\right)\right) & \text { in } \Omega_{f}
\end{aligned}\right.
$$

Fluid-Structure Interaction problem

Universal equations in reference subdomains
Dynamic equations

$$
\frac{\partial \mathbf{v}}{\partial t}=\left\{\begin{aligned}
\rho_{s}^{-1} \operatorname{div}\left(J \sigma_{s} \mathbf{F}^{-T}\right) & \text { in } \Omega_{s} \\
\left(J \rho_{f}\right)^{-1} \operatorname{div}\left(J \boldsymbol{\sigma}_{f} \mathbf{F}^{-T}\right)-\nabla \mathbf{v}\left(\mathbf{F}^{-1}\left(\mathbf{v}-\frac{\partial \mathbf{u}}{\partial t}\right)\right) & \text { in } \Omega_{f}
\end{aligned}\right.
$$

Kinematic equation

$$
\frac{\partial \mathbf{u}}{\partial t}=\mathbf{v} \quad \text { in } \Omega_{s}
$$

Fluid-Structure Interaction problem

Universal equations in reference subdomains

Dynamic equations

$$
\frac{\partial \mathbf{v}}{\partial t}=\left\{\begin{aligned}
\rho_{s}^{-1} \operatorname{div}\left(J \sigma_{s} \mathbf{F}^{-T}\right) & \text { in } \Omega_{s} \\
\left(J \rho_{f}\right)^{-1} \operatorname{div}\left(J \boldsymbol{\sigma}_{f} \mathbf{F}^{-T}\right)-\nabla \mathbf{v}\left(\mathbf{F}^{-1}\left(\mathbf{v}-\frac{\partial \mathbf{u}}{\partial t}\right)\right) & \text { in } \Omega_{f}
\end{aligned}\right.
$$

Kinematic equation

$$
\frac{\partial \mathbf{u}}{\partial t}=\mathbf{v} \quad \text { in } \Omega_{s}
$$

Fluid incompressibility

$$
\operatorname{div}\left(J \mathbf{F}^{-1} \mathbf{v}\right)=0 \quad \text { in } \Omega_{f} \quad \text { or } \quad J \nabla \mathbf{v}: \mathbf{F}^{-T}=0 \quad \text { in } \Omega_{f}
$$

Fluid-Structure Interaction problem

Universal equations in reference subdomains

Dynamic equations

$$
\frac{\partial \mathbf{v}}{\partial t}=\left\{\begin{aligned}
\rho_{s}^{-1} \operatorname{div}\left(J \sigma_{s} \mathbf{F}^{-T}\right) & \text { in } \Omega_{s} \\
\left(J \rho_{f}\right)^{-1} \operatorname{div}\left(J \boldsymbol{\sigma}_{f} \mathbf{F}^{-T}\right)-\nabla \mathbf{v}\left(\mathbf{F}^{-1}\left(\mathbf{v}-\frac{\partial \mathbf{u}}{\partial t}\right)\right) & \text { in } \Omega_{f}
\end{aligned}\right.
$$

Kinematic equation

$$
\frac{\partial \mathbf{u}}{\partial t}=\mathbf{v} \quad \text { in } \Omega_{s}
$$

Fluid incompressibility

$$
\operatorname{div}\left(J \mathbf{F}^{-1} \mathbf{v}\right)=0 \text { in } \Omega_{f} \quad \text { or } J \nabla \mathbf{v}: \mathbf{F}^{-T}=0 \quad \text { in } \Omega_{f}
$$

Constitutive relation for the fluid stress tensor

$$
\boldsymbol{\sigma}_{f}=-p_{f} \mathbf{I}+\mu_{f}\left((\nabla \mathbf{v}) \mathbf{F}^{-1}+\mathbf{F}^{-T}(\nabla \mathbf{v})^{T}\right) \quad \text { in } \Omega_{f}
$$

FSI problem

User-dependent equations in reference subdomains

Constitutive relation for the solid stress tensor

$$
\sigma_{s}=\sigma_{s}\left(J, \mathbf{F}, p_{s}, \lambda_{s}, \mu_{s}, \ldots\right) \text { in } \Omega_{s}
$$

${ }^{1}$ Michler et al (2004), Hubner et al (2004), Hron\&Turek (2006), \ldots. \equiv,

FSI problem

User-dependent equations in reference subdomains

Constitutive relation for the solid stress tensor

$$
\sigma_{s}=\sigma_{s}\left(J, \mathbf{F}, p_{s}, \lambda_{s}, \mu_{s}, \ldots\right) \text { in } \Omega_{s}
$$

Monolithic approach ${ }^{1}$: Extension of the displacement field to the fluid domain

$$
\begin{array}{rlrl}
G(\mathbf{u}) & =0 & & \text { in } \Omega_{f} \\
\mathbf{u} & =\mathbf{u}^{*} & \text { on } \partial \Omega_{f}
\end{array}
$$

${ }^{1}$ Michler et al (2004), Hubner et al (2004), Hron\&Turek (2006),...

FSI problem

User-dependent equations in reference subdomains

Constitutive relation for the solid stress tensor

$$
\sigma_{s}=\sigma_{s}\left(J, \mathbf{F}, p_{s}, \lambda_{s}, \mu_{s}, \ldots\right) \text { in } \Omega_{s}
$$

Monolithic approach ${ }^{1}$: Extension of the displacement field to the fluid domain

$$
\begin{aligned}
G(\mathbf{u}) & =0 & & \text { in } \Omega_{f} \\
\mathbf{u} & =\mathbf{u}^{*} & & \text { on } \partial \Omega_{f}
\end{aligned}
$$

FSI problem

User-dependent equations in reference subdomains

Constitutive relation for the solid stress tensor

$$
\sigma_{s}=\sigma_{s}\left(J, \mathbf{F}, p_{s}, \lambda_{s}, \mu_{s}, \ldots\right) \text { in } \Omega_{s}
$$

Monolithic approach ${ }^{1}$: Extension of the displacement field to the fluid domain

$$
\begin{aligned}
G(\mathbf{u}) & =0 & & \text { in } \Omega_{f} \\
\mathbf{u} & =\mathbf{u}^{*} & & \text { on } \partial \Omega_{f}
\end{aligned}
$$

for example, vector Laplace equation or elasticity equation

+ Initial, boundary, interface conditions $\left(\sigma_{f} \mathbf{F}^{-T} \mathbf{n}=\sigma_{s} \mathbf{F}^{-T} \mathbf{n}\right)$
${ }^{1}$ Michler et al (2004), Hubner et al (2004), Hron\&Turek (2006),...

Numerical scheme

- Conformal triangular or tetrahedral mesh Ω_{h} in $\widehat{\Omega}$
- LBB-stable pair for velocity and pressure $P_{2} / P_{1}, P_{2}$ for displacements
- Fortran open source software Ani2D, Ani3D (Advanced numerical instruments 2D/3D, K.Lipnikov, Yu.Vassilevski et al.) http://sf.net/p/ani2d/ http://sf.net/p/ani3d/:
- mesh generation
- FEM systems
- algebraic solvers

Numerical scheme

Find $\left\{\mathbf{u}^{k+1}, \mathbf{v}^{k+1}, p^{k+1}\right\} \in \mathbb{V}_{h}^{0} \times \mathbb{V}_{h} \times \mathbb{Q}_{h}$ s.t.

$$
\mathbf{v}^{k+1}=\mathbf{g}_{h}(\cdot,(k+1) \Delta t) \text { on } \Gamma_{f 0}, \quad\left[\frac{\partial \mathbf{u}}{\partial t}\right]_{k+1}=\mathbf{v}^{k+1} \text { on } \Gamma_{f s}
$$

Numerical scheme

Find $\left\{\mathbf{u}^{k+1}, \mathbf{v}^{k+1}, p^{k+1}\right\} \in \mathbb{V}_{h}^{0} \times \mathbb{V}_{h} \times \mathbb{Q}_{h}$ s.t.

$$
\mathbf{v}^{k+1}=\mathbf{g}_{h}(\cdot,(k+1) \Delta t) \text { on } \Gamma_{f 0}, \quad\left[\frac{\partial \mathbf{u}}{\partial t}\right]_{k+1}=\mathbf{v}^{k+1} \text { on } \Gamma_{f s}
$$

where

$$
\begin{gathered}
\mathbb{V}_{h} \subset H^{1}(\widehat{\Omega})^{3}, \mathbb{Q}_{h} \subset L^{2}(\widehat{\Omega}), \mathbb{V}_{h}^{0}=\left\{\mathbf{v} \in \mathbb{V}_{h}: \mathbf{v} \mid \Gamma_{50} \cup \mathbf{r}_{f 0}=\mathbf{0}\right\}, \mathbb{V}_{h}^{00}=\left\{\mathbf{v} \in \mathbb{V}_{h}^{0}:\left.\mathbf{v}\right|_{r_{s}}=\mathbf{0}\right\} \\
{\left[\frac{\partial \mathbf{f}}{\partial t}\right]_{k+1}:=\frac{3 \mathbf{f}^{k+1}-4 \mathbf{f}^{k}+\mathbf{f}^{k-1}}{2 \Delta t}}
\end{gathered}
$$

Numerical scheme

$$
\begin{aligned}
& \int_{\Omega_{s}} \rho_{s}\left[\frac{\partial \mathbf{v}}{\partial t}\right]_{k+1} \boldsymbol{\psi} \mathrm{~d} \Omega+\int_{\Omega_{s}} J_{k} \mathbf{F}\left(\widetilde{\mathbf{u}}^{k}\right) \mathbf{S}\left(\mathbf{u}^{k+1}, \widetilde{\mathbf{u}}^{k}\right): \nabla \boldsymbol{\psi} \mathrm{d} \Omega+ \\
& \int_{\Omega_{f}} \rho_{f} J_{k}\left[\frac{\partial \mathbf{v}}{\partial t}\right]_{k+1} \boldsymbol{\psi} \mathrm{~d} \Omega+\int_{\Omega_{f}} \rho_{f} J_{k} \nabla \mathbf{v}^{k+1} \mathbf{F}^{-1}\left(\widetilde{\mathbf{u}}^{k}\right)\left(\widetilde{\mathbf{v}}^{k}-\left[\widetilde{\left[\frac{\partial \mathbf{u}}{\partial t}\right.}\right]_{k}\right) \boldsymbol{\psi} \mathrm{d} \Omega+ \\
& \int_{\Omega_{f}} 2 \mu_{f} J_{k} \mathbf{D}_{\widetilde{\mathbf{u}}^{k}} \mathbf{v}^{k+1}: \mathbf{D}_{\widetilde{\mathbf{u}}^{k}} \boldsymbol{\psi} \mathrm{~d} \Omega-\int_{\Omega} p^{k+1} J_{k} \mathbf{F}^{-T}\left(\widetilde{\mathbf{u}}^{k}\right): \nabla \boldsymbol{\psi} \mathrm{d} \Omega=0 \quad \forall \boldsymbol{\psi} \in \mathbb{V}_{h}^{0}
\end{aligned}
$$

$$
J_{k}:=J\left(\widetilde{\mathbf{u}}^{k}\right), \quad \widetilde{\mathbf{f}}^{k}:=2 \mathbf{f}^{k}-\mathbf{f}^{k-1}, \quad \mathbf{D}_{\mathbf{u}} \mathbf{v}:=\left\{\nabla \mathbf{v} \mathbf{F}^{-1}(\mathbf{u})\right\}_{s}, \quad\{\mathbf{A}\}_{s}:=\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{T}\right)
$$

Numerical scheme

$$
\begin{aligned}
& \int_{\Omega_{s}} \rho_{s}\left[\frac{\partial \mathbf{v}}{\partial t}\right]_{k+1} \boldsymbol{\psi} \mathrm{~d} \Omega+\int_{\Omega_{s}} J_{k} \mathbf{F}\left(\widetilde{\mathbf{u}}^{k}\right) \mathbf{S}\left(\mathbf{u}^{k+1}, \widetilde{\mathbf{u}}^{k}\right): \nabla \boldsymbol{\psi} \mathrm{d} \Omega+ \\
& \int_{\Omega_{f}} \rho_{f} J_{k}\left[\frac{\partial \mathbf{v}}{\partial t}\right]_{k+1} \boldsymbol{\psi} \mathrm{~d} \Omega+\int_{\Omega_{f}} \rho_{f} J_{k} \nabla \mathbf{v}^{k+1} \mathbf{F}^{-1}\left(\widetilde{\mathbf{u}}^{k}\right)\left(\widetilde{\mathbf{v}}^{k}-\left[\widetilde{\left[\frac{\partial \mathbf{u}}{\partial t}\right.}\right]_{k}\right) \boldsymbol{\psi} \mathrm{d} \Omega+ \\
& \int_{\Omega_{f}} 2 \mu_{f} J_{k} \mathbf{D}_{\widetilde{\mathbf{u}}^{k}} \mathbf{v}^{k+1}: \mathbf{D}_{\widetilde{\mathbf{u}}^{k}} \boldsymbol{\psi} \mathrm{~d} \Omega-\int_{\Omega} p^{k+1} J_{k} \mathbf{F}^{-T}\left(\widetilde{\mathbf{u}}^{k}\right): \nabla \boldsymbol{\psi} \mathrm{d} \Omega=0 \quad \forall \boldsymbol{\psi} \in \mathbb{V}_{h}^{0} \\
& \int_{\Omega_{s}}\left[\frac{\partial \mathbf{u}}{\partial t}\right]_{k+1} \phi \mathrm{~d} \Omega-\int_{\Omega_{s}} \mathbf{v}^{k+1} \phi \mathrm{~d} \Omega+\int_{\Omega_{f}} G\left(\mathbf{u}^{k+1}\right) \boldsymbol{d} \mathrm{d} \Omega=0 \quad \forall \phi \in \mathbb{V}_{h}^{00}
\end{aligned}
$$

$$
J_{k}:=J\left(\widetilde{\mathbf{u}}^{k}\right), \quad \widetilde{\mathbf{f}}^{k}:=2 \mathbf{f}^{k}-\mathbf{f}^{k-1}, \quad \mathbf{D}_{\mathbf{u}} \mathbf{v}:=\left\{\nabla \mathbf{v} \mathbf{F}^{-1}(\mathbf{u})\right\}_{s}, \quad\{\mathbf{A}\}_{s}:=\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{T}\right)
$$

Numerical scheme

$$
\begin{aligned}
& \int_{\Omega_{s}} \rho_{s}\left[\frac{\partial \mathbf{v}}{\partial t}\right]_{k+1} \boldsymbol{\psi} \mathrm{~d} \Omega+\int_{\Omega_{s}} J_{k} \mathbf{F}\left(\widetilde{\mathbf{u}}^{k}\right) \mathbf{S}\left(\mathbf{u}^{k+1}, \widetilde{\mathbf{u}}^{k}\right): \nabla \boldsymbol{\psi} \mathrm{d} \Omega+ \\
& \int_{\Omega_{f}} \rho_{f} J_{k}\left[\frac{\partial \mathbf{v}}{\partial t}\right]_{k+1} \boldsymbol{\psi} \mathrm{~d} \Omega+\int_{\Omega_{f}} \rho_{f} J_{k} \nabla \mathbf{v}^{k+1} \mathbf{F}^{-1}\left(\widetilde{\mathbf{u}}^{k}\right)\left(\widetilde{\mathbf{v}}^{k}-\left[\widetilde{\left[\frac{\partial \mathbf{u}}{\partial t}\right.}\right]_{k}\right) \boldsymbol{\psi} \mathrm{d} \Omega+ \\
& \int_{\Omega_{f}} 2 \mu_{f} J_{k} \mathbf{D}_{\widetilde{\mathbf{u}}^{k}} \mathbf{v}^{k+1}: \mathbf{D}_{\widetilde{\mathbf{u}}^{k}} \boldsymbol{\psi} \mathrm{~d} \Omega-\int_{\Omega} p^{k+1} J_{k} \mathbf{F}^{-T}\left(\widetilde{\mathbf{u}}^{k}\right): \nabla \boldsymbol{\psi} \mathrm{d} \Omega=0 \quad \forall \boldsymbol{\psi} \in \mathbb{V}_{h}^{0} \\
& \int_{\Omega_{s}}\left[\frac{\partial \mathbf{u}}{\partial t}\right]_{k+1} \phi \mathrm{~d} \Omega-\int_{\Omega_{s}} \mathbf{v}^{k+1} \phi \mathrm{~d} \Omega+\int_{\Omega_{f}} G\left(\mathbf{u}^{k+1}\right) \phi \mathrm{d} \Omega=0 \quad \forall \boldsymbol{\phi} \in \mathbb{V}_{h}^{00} \\
& \int_{\Omega_{f}} J_{k} \nabla \mathbf{v}^{k+1}: \mathbf{F}^{-T}\left(\widetilde{\mathbf{u}}^{k}\right) q \mathrm{~d} \Omega=0 \quad \forall \boldsymbol{q} \in \mathbb{Q}_{h} \\
& J_{k}:=J\left(\widetilde{\mathbf{u}}^{k}\right), \quad \widetilde{\mathbf{f}}^{k}:=2 \mathbf{f}^{k}-\mathbf{f}^{k-1}, \quad \mathbf{D}_{\mathbf{u}} \mathbf{v}:=\left\{\nabla \mathbf{v} \mathbf{F}^{-1}(\mathbf{u})\right\}_{s}, \quad\{\mathbf{A}\}_{s}:=\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{T}\right)
\end{aligned}
$$

Numerical scheme

$$
\ldots+\int_{\Omega_{s}} J_{k} \mathbf{F}\left(\widetilde{\mathbf{u}}^{k}\right) \mathbf{S}\left(\mathbf{u}^{k+1}, \widetilde{\mathbf{u}}^{k}\right): \nabla \boldsymbol{\psi} \mathrm{d} \Omega+\ldots
$$

- St. Venant-Kirchhoff model (geometrically nonineart):

$$
\begin{aligned}
& \mathbf{S}\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)=\lambda_{s} \operatorname{tr}\left(\mathbf{E}\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)\right) \mathbf{I}+2 \mu_{s} \mathbf{E}\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right) ; \\
& \mathbf{E}\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)=\left\{\mathbf{F}\left(\mathbf{u}_{1}\right)^{T} \mathbf{F}\left(\mathbf{u}_{2}\right)-\mathbf{I}\right\}_{s}
\end{aligned}
$$

- inc. Blatz-Ko model:

$$
\mathbf{S}\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)=\mu_{s}\left(\operatorname{tr}\left(\left\{\mathbf{F}\left(\mathbf{u}_{1}\right)^{T} \mathbf{F}\left(\mathbf{u}_{2}\right)\right\}_{s}\right) \mathbf{I}-\left\{\mathbf{F}\left(\mathbf{u}_{1}\right)^{T} \mathbf{F}\left(\mathbf{u}_{2}\right)\right\}_{s}\right)
$$

- inc. Neo-Hookean model:

$$
\mathbf{S}\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)=\mu_{s} \mathbf{I} ; \mathbf{F}\left(\widetilde{\mathbf{u}}^{k}\right) \rightarrow \mathbf{F}\left(\mathbf{u}^{k+1}\right)
$$

$$
\{\mathbf{A}\}_{s}:=\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{T}\right)
$$

Numerical scheme

The scheme

- provides strong coupling on interface
- semi-implicit
- produces one linear system per time step
- second order in time

Numerical scheme

The scheme

- provides strong coupling on interface
- semi-implicit
- produces one linear system per time step
- second order in time
- unconditionally stable (no CFL restriction), proved with assumptions:
- 1st order in time

St. Venant-Kirchhoff inc./comp. (experiment: Neo-Hookean inc./comp.)

- extension of \mathbf{u} to Ω_{f} guarantees $J_{k}>0$
- Δt is not large
A.Lozovskiy, M.Olshanskii, V.Salamatova, Yu.Vassilevski. An unconditionally stable semi-implicit FSI finite element method. Comput.Methods Appl.Mech.Engrg., 297, 2015

3D: silicone filament in glycerol

Benchmark challenge for CMBE 2015, Paris

Image from A. Hessenthaler et al. Experiment for validation of fluid-structure interaction models and algorithms. Int. J. for Numer. Meth. Biomed. Engng., 2017

3D: silicone filament in glycerol

Meshed volume: original and extended domains.

3D: silicone filament in glycerol

- Steady and pulsatile flow regimes

	Phase I	Phase II
velocity	Stationary	pulsatile
ρ_{f}	$1.1633 \cdot 10^{-3} \mathrm{~g} \mathrm{~mm}^{3}$	$1.164 \cdot 10^{-3} \mathrm{~g} \mathrm{~mm}^{-3}$
μ_{f}	$12.5 \cdot 10^{-3} \mathrm{~g} \mathrm{~mm}^{-1} \mathrm{~s}^{-1}$	$13.37 \cdot 10^{-3} \mathrm{~g} \mathrm{~mm}^{-1} \mathrm{~s}^{-1}$

- Inflow velocities for one cycle of frequency $1 / 6 \mathrm{~Hz}$ for phase II:

- Simulation was run with $\Delta t=10^{-2} \mathrm{~s}, t \in[0,12]$
- \#Tets $\left(\Omega_{s}\right)=733, \# \operatorname{Tets}\left(\Omega_{f}\right)=28712$, \#unknowns $=254439$
- The filament (SVK) is lighter than the fluid and deflects upward
- Linear elasticity model is used for the update of the displacement extension in Ω_{f}, the Lame parameters are element-volume dependent

3D: silicone filament in glycerol

displacement extension in Ω_{f}
M.Landajuela et al. Coupling schemes for the FSI forward prediction challenge: comparative study and validation. Int. J. for Numer. Meth. in Biomed. Engng., 33, 2017.

- Linear elasticity model is used for the update of the displacement extension in Ω_{f}

$$
\begin{aligned}
-\operatorname{div} & {\left[J \left(\lambda_{m} \operatorname{tr}\left(\nabla\left[\frac{\partial \mathbf{u}}{\partial t}\right]^{k} \mathbf{F}^{-1}\right) \mathbf{I}\right.\right.} \\
& \left.\left.+\mu_{m}\left(\nabla\left[\frac{\partial \mathbf{u}}{\partial t}\right]^{k} \mathbf{F}^{-1}+\left(\nabla\left[\frac{\partial \mathbf{u}}{\partial t}\right]^{k} \mathbf{F}^{-1}\right)^{T}\right)\right) \mathbf{F}^{-T}\right]=0 \quad \text { in } \Omega_{f},
\end{aligned}
$$

- the Lame parameters are element-volume dependent:

$$
\lambda_{m}=16 \mu_{m}=16 \frac{\mu_{s}}{v_{e}^{1.2}}
$$

3D: silicone filament in glycerol

Streamlines colored by the velocity magnitude $t=0.721 \mathrm{~s}$ (left), $t=2.017 \mathrm{~s}$ (right)

Track of the computed y-displacement of the point in the structure with coordinate $z \approx 53, x=0$ for $t \in[0,6]$ and recorded experimental data
A.Lozovskiy, M.OIshanskii, Yu.Vassilevski. Analysis and assessment of a monolithic FSI finite element method. To appear in Computers \& Fluids

Incompressible fluid flow in a time-dependent domain

Navier-Stokes equations in a time-dependent domain Prerequisites

- reference domain Ω_{0}
- transformation $\boldsymbol{\xi}$ mapping Ω_{0} to $\Omega(t)$ is given
- \mathbf{v} and \mathbf{u} denote velocities and displacements in Ω_{0}
- $\boldsymbol{\xi}(\mathbf{x}):=\mathbf{x}+\mathbf{u}(\mathbf{x}), \mathbf{F}:=\nabla \boldsymbol{\xi}=\mathbf{I}+\nabla \mathbf{u}, J:=\operatorname{det}(\mathbf{F})$
- Cauchy stress tensor σ
- pressure p
- density ρ is constant

Incompressible fluid flow in a moving domain
Navier-Stokes equations in reference domain Ω_{0}
Let $\boldsymbol{\xi}$ mapping Ω_{0} to $\Omega(t), \mathbf{F}=\nabla \boldsymbol{\xi}=\mathbf{I}+\nabla \mathbf{u}, \boldsymbol{J}=\operatorname{det}(\mathbf{F})$ be given

Incompressible fluid flow in a moving domain

Navier-Stokes equations in reference domain Ω_{0}
Let $\boldsymbol{\xi}$ mapping Ω_{0} to $\Omega(t), \mathbf{F}=\nabla \boldsymbol{\xi}=\mathbf{I}+\nabla \mathbf{u}, J=\operatorname{det}(\mathbf{F})$ be given
Dynamic equations

$$
\frac{\partial \mathbf{v}}{\partial t}=\left(J \rho_{f}\right)^{-1} \operatorname{div}\left(J \sigma_{f} \mathbf{F}^{-T}\right)-\nabla \mathbf{v}\left(\mathbf{F}^{-1}\left(\mathbf{v}-\frac{\partial \mathbf{u}}{\partial t}\right)\right) \quad \text { in } \Omega_{0}
$$

Incompressible fluid flow in a moving domain

Navier-Stokes equations in reference domain Ω_{0}
Let $\boldsymbol{\xi}$ mapping Ω_{0} to $\Omega(t), \mathbf{F}=\nabla \boldsymbol{\xi}=\mathbf{I}+\nabla \mathbf{u}, J=\operatorname{det}(\mathbf{F})$ be given
Dynamic equations

$$
\frac{\partial \mathbf{v}}{\partial t}=\left(J \rho_{f}\right)^{-1} \operatorname{div}\left(J \sigma_{f} \mathbf{F}^{-T}\right)-\nabla \mathbf{v}\left(\mathbf{F}^{-1}\left(\mathbf{v}-\frac{\partial \mathbf{u}}{\partial t}\right)\right) \quad \text { in } \Omega_{0}
$$

Fluid incompressibility

$$
\operatorname{div}\left(J \mathbf{F}^{-1} \mathbf{v}\right)=0 \quad \text { in } \Omega_{0} \quad \text { or } J \nabla \mathbf{v}: \mathbf{F}^{-T}=0 \quad \text { in } \Omega_{0}
$$

Incompressible fluid flow in a moving domain

Navier-Stokes equations in reference domain Ω_{0}
Let $\boldsymbol{\xi}$ mapping Ω_{0} to $\Omega(t), \mathbf{F}=\nabla \boldsymbol{\xi}=\mathbf{I}+\nabla \mathbf{u}, J=\operatorname{det}(\mathbf{F})$ be given
Dynamic equations

$$
\frac{\partial \mathbf{v}}{\partial t}=\left(J \rho_{f}\right)^{-1} \operatorname{div}\left(J \boldsymbol{\sigma}_{f} \mathbf{F}^{-T}\right)-\nabla \mathbf{v}\left(\mathbf{F}^{-1}\left(\mathbf{v}-\frac{\partial \mathbf{u}}{\partial t}\right)\right) \quad \text { in } \Omega_{0}
$$

Fluid incompressibility

$$
\operatorname{div}\left(J \mathbf{F}^{-1} \mathbf{v}\right)=0 \quad \text { in } \Omega_{0} \text { or } J \nabla \mathbf{v}: \mathbf{F}^{-T}=0 \quad \text { in } \Omega_{0}
$$

Constitutive relation for the fluid stress tensor

$$
\sigma_{f}=-p_{f} \mathbf{I}+\mu_{f}\left((\nabla \mathbf{v}) \mathbf{F}^{-1}+\mathbf{F}^{-T}(\nabla \mathbf{v})^{T}\right) \quad \text { in } \Omega_{0}
$$

Incompressible fluid flow in a moving domain

Navier-Stokes equations in reference domain Ω_{0}
Let $\boldsymbol{\xi}$ mapping Ω_{0} to $\Omega(t), \mathbf{F}=\nabla \boldsymbol{\xi}=\mathbf{I}+\nabla \mathbf{u}, J=\operatorname{det}(\mathbf{F})$ be given
Dynamic equations

$$
\frac{\partial \mathbf{v}}{\partial t}=\left(J \rho_{f}\right)^{-1} \operatorname{div}\left(J \sigma_{f} \mathbf{F}^{-T}\right)-\nabla \mathbf{v}\left(\mathbf{F}^{-1}\left(\mathbf{v}-\frac{\partial \mathbf{u}}{\partial t}\right)\right) \quad \text { in } \Omega_{0}
$$

Fluid incompressibility

$$
\operatorname{div}\left(J \mathbf{F}^{-1} \mathbf{v}\right)=0 \text { in } \Omega_{0} \text { or } J \nabla \mathbf{v}: \mathbf{F}^{-T}=0 \quad \text { in } \Omega_{0}
$$

Constitutive relation for the fluid stress tensor

$$
\sigma_{f}=-p_{f} \mathbf{I}+\mu_{f}\left((\nabla \mathbf{v}) \mathbf{F}^{-1}+\mathbf{F}^{-T}(\nabla \mathbf{v})^{T}\right) \quad \text { in } \Omega_{0}
$$

Mapping $\boldsymbol{\xi}$ does not define material trajectories \rightarrow quasi-Lagrangian formulation

Finite element scheme

Let $\mathbb{V}_{h}, \mathbb{Q}_{h}$ be Taylor-Hood P_{2} / P_{1} finite element spaces.
Find $\left\{\mathbf{v}_{h}^{k}, p_{h}^{k}\right\} \in \mathbb{V}_{h} \times \mathbb{Q}_{h}$ satisfying b.c.
(" do nothing" $\boldsymbol{\sigma} \mathbf{F}^{-T} \mathbf{n}=0$ or no-penetration no-slip $\left.\mathbf{v}^{k}=\left(\boldsymbol{\xi}^{k}-\boldsymbol{\xi}^{k-1}\right) / \Delta t\right)$

$$
\begin{gathered}
\int_{\Omega_{0}} J_{k} \frac{\mathbf{v}_{h}^{k}-\mathbf{v}_{h}^{k-1}}{\Delta t} \cdot \boldsymbol{\psi} \mathrm{~d} \mathbf{x}+\int_{\Omega_{0}} J_{k} \nabla \mathbf{v}_{h}^{k} \mathbf{F}_{k}^{-1}\left(\mathbf{v}_{h}^{k-1}-\frac{\boldsymbol{\xi}^{k}-\boldsymbol{\xi}^{k-1}}{\Delta t}\right) \cdot \boldsymbol{\psi} \mathrm{d} \mathbf{x}- \\
\int_{\Omega_{0}} J_{k} p_{h}^{k} \mathbf{F}_{k}^{-T}: \nabla \boldsymbol{\psi} \mathrm{d} \mathbf{x}+\int_{\Omega_{0}} J_{k} q \mathbf{F}_{k}^{-T}: \nabla \mathbf{v}_{h}^{k} \mathrm{~d} \mathbf{x}+ \\
\int_{\Omega_{0}} \nu J_{k}\left(\nabla \mathbf{v}_{h}^{k} \mathbf{F}_{k}^{-1} \mathbf{F}_{k}^{-T}+\mathbf{F}_{k}^{-T}\left(\nabla \mathbf{v}_{h}^{k}\right)^{T} \mathbf{F}_{k}^{-T}\right): \nabla \boldsymbol{\psi} \mathrm{d} \mathbf{x}=0 \\
\int_{\Omega_{0}} J_{k} \nabla \mathbf{v}^{k}: \mathbf{F}_{k}^{-T} q \mathrm{~d} \Omega=0
\end{gathered}
$$

for all ψ and q from the appropriate FE spaces

Finite element scheme

The scheme

- semi-implicit
- produces one linear system per time step
- first order in time (may be generalized to the second order)

Finite element scheme

The scheme

- semi-implicit
- produces one linear system per time step
- first order in time (may be generalized to the second order)
- unconditionally stable (no CFL restriction) and 2nd order accurate, proved with assumptions:
$-\inf _{Q} J \geq c_{J}>0, \quad \sup _{Q}\left(\|\mathbf{F}\|_{F}+\left\|\mathbf{F}^{-1}\right\|_{F}\right) \leq C_{F}$
- LBB-stable pairs (e.g. P_{2} / P_{1})
- Δt is not large
A.Danilov, A.Lozovskiy, M.Olshanskii, Yu.Vassilevski. A finite element method for the Navier-Stokes equations in moving domain with application to hemodynamics of the left ventricle. Russian J. Numer. Anal. Math. Modelling, 32, 2017 A.Lozovskiy, M.Olshanskii, Yu.Vassilevski. A quasi-Lagrangian finite element method for the Navier-Stokes equations in a time-dependent domain. Comput. Methods Appl. Mech. Engrg. 333, 2018

3D: left ventricle of a human heart

Figure: Left ventricle

Figure: Ventricle volume

The law of motion for the ventricle walls is known thanks to ceCT scans $\rightarrow 100$ mesh files with time gap $0.0127 \mathrm{~s} \rightarrow \mathbf{u}$ given as input \rightarrow FSI reduced to NSE in a moving domain

- 2 - aortic valve (outflow)
- 5 - mitral valve (inflow)

3D: left ventricle of a human heart

- Quasi-uniform mesh: 14033 vertices, 69257 elements, 88150 edges.
- Boundary conditions: Dirichlet $\mathbf{v}=\frac{\partial \mathbf{u}}{\partial t}$ except:
- Do-nothing on aortal valve during systole
- Do-nothing on mitral valve during diastole
- Time step 0.0127 s is too large! \Longrightarrow refined to $\Delta t=0.0127 / 20 \mathrm{~s} \Longrightarrow$ Cubic-splined \mathbf{u}.
- Blood parameters: $\rho_{f}=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$, $\mu_{f}=4 \cdot 10^{-3} \mathrm{~Pa} \cdot \mathrm{~s}$.

