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A model of biological evolution by constructive statisitical
mechanics where Hamiltonian contains contribution from
logarithmic Kolmogorov complexity.

Yuri Manin’s Complexity as Energy approach — Gibbs distribution
is the Zipf’s scaling law.

Eugene Koonin’s Third Evolutionary Synthesis — scaling in
genomics should be described by interacting gas of genes.

Relation to machine learning — biological fitness is described by
the functional of empirical risk and Kolmogorov complexity is used
as a regularization to reduce overfitting.



The idea of constructive mathematics is to add computability to
properties of mathematical theory, in particular to consider theories
where objects are defined constructively and maps are computable
functions.
Constructive worlds. An (infinite) constructive world is a
countable set X given together with a class of structural
numberings: computable bijections u : Z+ → X .
Moreover natural maps between constructive worlds should be
given by computable functions. One can also consider constructive
worlds enumerated by sequences of bits (”programs”).

Example. Goedel numbering of formulae of a formal language.



Complexity as energy (Yuri Manin):

There are natural observable and measureable phenomena in the
world of information that can be given a mathematical
explanation, if one postulates that logarithmic Kolmogorov
complexity plays a role of energy.

Y I Manin, Complexity vs energy: theory of computation and
theoretical physics, Journal of Physics: Conference Series 532
(2014) 012018 arXiv:1302.6695

Relation to Zipf’s law.
We apply this idea to modeling of biological evolution and discuss
relation of Zipf’s law and scaling in genomes.
Biological (genetic) sequences in this approach form a constructive
world, i.e. Biology is a Constructive Physics.



Kolmogorov complexity and Kolmogorov order.
A constructive world X is generated by ”programs” (sequences of
bits). For x , y ∈ X we consider the conditional entropy
(complexity) as the minimal length of program p (in bits) satisfying

KA(x |y) = min
A(p,y)=x

l(p). (1)

i.e. program p computes x starting from y . Here A is a ”way of
programming”.

Unconditional complexity is given by application of the above
definition to some ”initial” object y0

KA(x) = KA(x |y0).



Logarithmic Kolmogorov complexity of x is the length (in bits) of
the shortest program which generates x .

There exists such way of programming A that for each other
(semi)-computable B, some constant cAB > 0, and all x ∈ X , one
has

KA(x) ≤ KB(x) + cAB .

Here KA(x) is the logarithmic Kolmogorov complexity of x . Way
of programming A is called optimal Kolmogorov numbering.

A Kolmogorov order of a constructive world X is a bijection
X → Z+ arranging elements of X in the increasing order of their
complexities KA.



Properties of Kolmogorov complexity
Any optimal numbering is only partial function, and its definition
domain is not decidable.
Kolmogorov complexity KA itself is not computable. It is the lower
bound of a sequence of computable functions. Kolmogorov order is
not computable as well.
Kolmogorov order of naturals cardinally differs from the natural
order in the following sense: it puts in the initial segments very
large numbers that are at the same time Kolmogorov simple (for

example 2k , 22
k
).

This can be compared with properties of natural language, which
are usually discussed as a result of historical accidents but at least
partially are related to possibility to express complex meanings in
short way — abundance of synonyms and senseless grammatically
correct texts.



Zipf’s law and Kolmogorov order. Frequencies of words of a
natural language in texts. If all words wk of a language are ranked
according to decreasing frequency of their appearance in a corpus
of texts, then the frequency pk of wk is approximately inversely
proportional to its rank k: pk ∼ k−1.

Zipf: this distribution ”minimizes effort”. Gibbs distribution with
energy proportional to log k gives a power law.

How minimization of complexity leads to Zipf’s law
(Yu.I.Manin). A mathematical model of Zipf’s law is based upon
two postulates:
(A) Rank ordering coincides with the Kolmogorov ordering.
(B) The probability distribution producing Zipf’s law is Gibbs
distribution with energy equal to logarithmic Kolmogorov
complexity e−K(w).



Zipf’s law is described by the statistical sum∑
w

e−zK(w)

with the inverse temperature z = 1.
For natural numbers, since for majority of naturals logarithmic
Kolmogorov complexity of n is close to log n, the statistical sum is
”similar” to zeta function∑

n

e−zK(n) ≈ ζ(z) =
∑
n

n−z . (2)

Point z = 1 is the point of phase transition: for z > 1 the series
for zeta function converge and for z ≤ 1 diverge.

Exponent −1 in the Zipf’s law — phase transition in the model
where (logarithmic) Kolmogorov complexity is energy.



Scaling in genomics
Eugene V. Koonin, The Logic of Chance: The Nature and Origin
of Biological Evolution, Pearson Education, 2012.

Eugene V. Koonin, Are There Laws of Genome Evolution? PLoS
Comput Biol. 7(8): e1002173 (2011).

Universals of Genome Evolution:
1) log-normal distribution of the evolutionary rates between
orthologous genes,
2) power law-like distributions of membership in paralogous gene
families,
3) scaling of functional classes of genes with genome size.



E.Koonin: scaling in genomics should be described by some model
of statistical mechanics — interacting gas of genes.
The ”third evolutionary synthesis”
(the first is Darwinism, the second is Darwinism plus genetics, and
the third should generalize Darwinism with genomics data).

Our Claim. Scaling in genomics should be related to Zipf’s law.
The corresponding statistical mechanical model should contain a
contribution from complexity in energy.



Complexity as energy in biological evolution
Set of biological sequences (genes, part of genomes, total
genomes). Structure of a constructive world on the set of
biological sequences:

Finite set S of sequences (genes, regulatory sequences, etc.), and a
finite set O of genome editing operations with contains operations
of gluing together sequences and operations similar to typical
evolutionary transformations (point mutations, insertions, deletions
(in particular insertions and deletions of genes si ∈ S), duplications
of parts of a sequence, etc.).

To elements si ∈ S and oj ∈ O we put in correspondence positive
numbers w(si ) and w(oj), called scores (or weights).



For a sequence s obtained from elements in S by applications of
operations in O we put in correspondence score w(s) equal to a
sum of scores of elements si ∈ S and operations oj ∈ O:
composition of oj generates the sequence s starting from si .
Sequence s can be obtained in this way non-uniquely.
Complexity of s — minimum over possible compositions of
operations oj ∈ O and elementary sequences si ∈ S giving s

KSOW (s) = min
A(s1,...,sn)=s

∑
i

w(si ) +
∑
j

w(oj)

 (3)

where A is a (finite) composition of oj applied to sequences
s1, . . . , sn.



Conditional version KSOW (s ′|s) of complexity (3)

KSOW (s ′|s) = min
A(s1,...,sn)[s]=s′

∑
i

w(si ) +
∑
j

w(oj)

 , (4)

we generate sequence s ′ starting from sequence s.
A(s1, . . . , sn)[s] is a combination of genome editing operations
containing sequences s1, . . . , sn applied to s.

Complexity KSOW (s) — weighted number of genes and edit
operations generating sequence s. Logarithmic Kolmogorov
complexity (approximately) — number of computational
operations generating element of a constructive world.
Complexity (3), (4) gives weighted version of estimate from above
for logarithmic Kolmogorov complexity.



Model of the Third Evolutionary Synthesis — constructive
statistical mechanical system with states s — sequences, generated
(constructed) as above, statistical sum

Z =
∑
s

e−βH(s), H = HF + HK (5)

where β is the inverse temperature and the Hamiltonian contains
two contributions:
HF (s) describes biological fitness of a sequence s,
HK (s) describes complexity of s (for the described above example
HK = KSOW ).
Here good fitness corresponds to low HF (s) (potential wells on the
fitness landscape). The symbol K in HK is for Kolmogorov
(complexity).
The contribution HK (s) describes the evolutionary effort to
generate the sequence s (sequences with less evolutionary effort
are more advantageous).



Remark. Complexity of sequences grow sufficiently fast with
addition of sequences from S and application of editing operations
from O, hence for sufficiently low temperatures (large β) the
constructive statistical sum (5) converges.

Scaling in genomics — Zipf’s law
Using (3), (5), the scaling in genomics, in particular power law–like
distributions of membership in paralogous gene families, can be
discussed as a consequence of Zipf’s law. Paralogous genes are
genes in the same genome generated by duplication events.
Let us assume that if the genome contains a paralogous family of
genes with N elements, then the Kolmogorov rank of this genome
should be proportional to N (since the complexity (3) in this case
will contain N contributions w(si ) for some gene si ). Then by
Zipf’s law (2) contribution of this genome to the statistical sum
will be proportional to N−z which gives the power law.



Evolution and machine learning
A problem of biological evolution can be considered as a problem
of learning where genomes learn in the process of natural selection.
Contribution HF (s) in (5) (biological fitness of sequence s) can be
modeled by the functional of empirical risk (number of errors on a
training set)

HF (s) = Remp(s) =
1

l

l∑
j=1

(yj − f (vj , s))2.

Here genome s generates a classifier f (v , s) which models
biological function — it recognizes the situation v and classifies it
(gives 0 or 1 for f (v , s)). Here (y1, v1), . . . , (yl , vl), yj ∈ 0, 1 is the
training set.



Machine learning — joint minimization of empirical risk and
regularization term

Remp(classifier, training set) + Reg(classifier).

Regularizing contribution describes some kind of complexity of a
classifier. Regularization reduces overfitting.

Vapnik–Chervonenkis theory (or VC-theory) states that a classifier
can be taught if the family of classifiers has sufficiently low
VC-entropy (which is some kind of complexity).
Presence of the complexity contribution HK in Hamiltonian (5) can
be considered as a regularization by low Kolmogorov complexity in
the model of learning by evolution.

Minimization of Kolmogorov complexity in learning theory with
applications to low complexity art and music

J. Schmidhuber, Discovering neural nets with low Kolmogorov
complexity and high generalization capability, Neural Networks 10
no 5, P. 857–873 (1997).



Summary

We have discussed the application of Yuri Manin’s idea on relation
of the Zipf’s law and Kolmogorov order (complexity as energy) to
biological evolution — the Hamiltonian of evolution should contain
a contribution given by (weighted estimate from above for)
Kolmogorov complexity — weighted number of elementary
evolutionary operations (evolutionary effort).

Zipf’s law in this approach should be related to scaling laws
observed in genomics. The third evolutionary synthesis.

Modeling of evolution by machine learning approach — biological
fitness is the functional of empirical risk and Kolmogorov
complexity term is the regularization to reduce overfitting.


