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Segmentation in ITK-SNAP

www.liltksnap.org
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www.itksnap.org

Medical image segmentation

Fullsize segmented model and tetrahedral mesh
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Input data: Examples of CT scans
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Main problems

@ image variability resulting from the wide range of imaging devices
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Main problems

image variability resulting from the wide range of imaging devices
noise, artifacts

large patient anatomical variability

intensity values overlap between different organs(“leaks”)
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Main problems
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Matthias Hofer. “CT-Kursbuch”. Didamed Verlag, 2014
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Main problems: partial volume effect

Coronal and axial slices of spine
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Previous work: reference model transformation

@ Anthropometrical rescaling of the human model

Danilov, A.; Kramarenko, V.; Nikolaev, D.; Yurova, A. Personalized model adaptation for bioimpedance

measurements optimization. Russian Journal of Numerical Analysis and Mathematical Modelling 2013, 28, 459—470.
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Previous work: reference model transformation

@ two sets of the control points defined by user
@ the control points of the reference image are shifted to the new
positions

Patient Image

Reference Labels Patient Labels

Danilov, A.; Kramarenko, V.; Nikolaev, D.; Yurova, A. Personalized model adaptation for bioimpedance

measurements optimization. Russian Journal of Numerical Analysis and Mathematical;Modelling 2013, 28, 459-470.
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Previous work: voxel clustering

@ Simple Linear lterative Clustering (SLIC) and Region Adjacency
Graph. Edge weights depend on the clusters mean intensity.
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Previous work: voxel clustering
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Previous work: voxel clustering

o Egdes are remov

ed by thresholding
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Previous work: edge detectors

Additional information: Edge detectors(Canny edge detector)

Drawbacks:

o false edges

@ discontinuities
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Previous work: edge detectors

Prewitt operator Sobel operator
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Texture analysis for medical image segmentation

R.Haralick, K.Shanmugam. Textural Features for Image Classification.

@ texture contains important information about the structural
arrangement of surfaces and their relationship to the surrounding
environment

@ for human observers texture is quite easy to recognize and describe in
empirical terms
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Texture analysis for medical image segmentation

R.Haralick, K.Shanmugam. Textural Features for Image Classification.
@ Image N, x N,
o Ly={1,2,.., N}, L, ={1,2,...N,}
@ The set of quantized gray tones: G = {1,2,..., N, }

Gray-Tone Spatial-Dependence Matrices:

a frequency of occurance of two neighboring resolution cells separated
by distance d, with gray tones / and ;.

l.e. for any horizontal distance d in 2D case the matrix is computed
as following:

P(i.J,d, 0) = #{((k, 1), (m, m)) € (L % L) x (Le x L))k — m =
0,1 = nf = d. Ik, 1) = i, /(m. n) = j},

where # denotes the number of elements in the set.
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Texture analysis for medical image segmentation

Examples of Textural Features Extracted from Gray-Tone

Spatial-Dependence Matrices

@ Angular second moment

o Contrast
Ng—1 Ng Ng

h= 3 {3 2P )}

n=0 i=1j=
li—jl=n
@ Inverse Difference Moment
1 . .
fi =20 e )
i
o Entropy

fo = — 3 i) log(p(i,)))
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Texture analysis for medical image segmentation

Rules of automated segmentation:

@ Garbage In = Garbage Out
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Texture analysis for medical image segmentation

Rules of automated segmentation:
@ Garbage In = Garbage Out

@ Automatic segmentation is weaker than manual segmentation, but it
saves time
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Texture analysis for medical image segmentation

Multiphase CT-scans

a. Native phase b. Arterial phase c. Venous phase

H. Alkadhi, S. Leschka, P. Stolzmann, H. Scheffel. “Wie funktioniert CT?". Springer, 2011
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Texture analysis for medical image segmentation

Index into Color Map
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Results of contrast computation for two anonymous patients
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Texture analysis for medical image segmentation

5 x 5 x 5 vox neighborhood

Results of entropy computation for anonymous patient on two different
scales
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Texture analysis for medical image segmentation

ENTg == palirj) In(pa(i. )

i=0 j=0

@ Entropy achieves its maximum value In r, if the number of different
adjacent voxel pairs is equal to the number of connections in the
neighborhood
r is the doubled number of connections in the cubic neighborhood.

o Entropy achieves its minimum value, if there is only one type of
connection.
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Texture analysis for medical image segmentation




Texture analysis for medical image segmentation

Binary mask obtained from the results of entropy computation
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Extraction of 3D model: 3D active contours

Active contour evolution is driven by a combination of forces:

o

push the contour towards boundaries in the image data

2]

push the contour towards maintaining a simple shape

(picture from ITK SNAP guide)

Yushkevich P.A., Piven J., Hazlett H.C., Smith R.G., Ho S., Gee J.C., Gerig G.
User-guided 3D active contour segmentation of anatomical structures: significantly

improved efficiency and reliability
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Results

Spleen segmentation
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Results

Liver segmentation
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Results

Results of entropy computation on 3 x 3 x 3 vox neighborhood on CPU n
GPU.

The GPU version was executed on NVIDIA graphic card GeForce GT 740M, CPU version on Intel Core i7 CPU

Time, ¢
Number of voxels CPU TGP ; __
134217728 4274 | 620
67108864 1662 | 219
33554432 85h2 155
16777216 413 77 s
8388608 198 37
4194304 95 17 .
2097152 41 7 b
1048576 16 3 0% o -

Alexander Danilov, Roman Pryamonosov and Alexandra Yurova. Image segmentation for Cardiovascular Biomedical

Applications at different scales. Computation 2016, 4(3),35; doi:10.3390/computation4030035
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