

The problems of influenza peak forecasting in Russian cities by means of SEIR models

Vasiliy Leonenko,

eScience Research Institute, ITMO University, Saint Petersburg, Russia

Sergey Ivanov,

eScience Research Institute, ITMO University, Saint Petersburg, Russia

Reasons for influenza forecasting

- Store medications in advance
- Prepare means to prevent disease complications (heart diseases, strokes)
- Calculate the necessary number of hospital beds to treat the severe cases of influenza

Baroyan-Rvachev approach

• For a fixed epidemic season the influenza outbreak incidence curves are similar in different cities

Baroyan-Rvachev approach

• For a fixed epidemic season the influenza outbreak incidence curves are similar in different cities

Baroyan-Rvachev approach

• For a fixed epidemic season the influenza outbreak incidence curves are similar in different cities

Taking the incidence of the first epidemic outbreak

Calibrating the outbreak model

Predicting the epidemic peaks with a local

Why can't we make the forecasts now?

- Growing incoherence of the model in 8o's (due to the reasons still not entirely clarified)
- Absence of daily incidence reporting Using interpolated weekly data
- Lack of transport data Applying alternative prediction methods

Local model types

• Continuous SEIR model

$$\frac{dS}{dt} = -\beta SI,$$

$$\frac{dE}{dt} = \beta SI - \gamma E,$$

$$\frac{dI}{dt} = \gamma E - \delta I,$$

$$\frac{dR}{dt} = \delta I,$$

$$S(t_0) = S_0 \ge 0, E(t_0) = E_0 \ge 0, I(t_0) = I_0 \ge 0,$$

$$S_0 + E_0 + I_0 = \alpha,$$

$$R(t_0) = 1 - \alpha.$$

Local model types

• Discrete Baroyan-Rvachev model

$$\overline{y_t} = \sum_{\tau=0}^T y_{t-\tau} g_{\tau},$$
$$y_{t+1} = \frac{\beta}{\rho} x_t \overline{y_t},$$
$$x_{t+1} = x_t - y_{t+1},$$
$$x_0 = \alpha \rho.$$

Simplified Baroyan-Rvachev forecasting

- Take the incidence data of the first Russian flu outbreak from its start to the peak
- Calibrate the local model on the outbreak data
- Wait until the epidemics starts in other cities
- Apply the calibrated local model to predict peaks

Simplified Baroyan-Rvachev forecasting

Forecasting via local model

• Take the incomplete incidence data from the city under consideration

• Calibrate the local model on the outbreak data

• Apply the calibrated local model to predict the peak

Forecasting via local model

Peak prediction quality criteria

• Measurements:

- *dt*, absolute error of peak day detection
- *dh*, the relation between the heights of the modeled peak and actual epidemic peak
- "Horizontal stripe": $dh \in (0.7; 1.5)$.
- "Vertical stripe": $dt \in -7..7$.
- "Square": $dt \in -8...8$, $dh \in (0.5; 2.0)$.

Simplified B-R prediction quality

Comparison with primitive forecasting

Local model prediction quality

Conclusions

• The **peak height** could be predicted with the same accuracy as in 70's

• The **peak date** prediction accuracy is unsatisfactory

Ways of accuracy improvement

- Bringing transport data into play
- Adding constraints to local model trajectories based on prior knowledge of the past outbreaks in the city
- Using of smoothed data and different fitting criteria to reduce the weight of the outliers
- Using special functions (deterministic or stochastic) to fit the incomplete outbreak half-wave*

* For instance, like in Viboud et al. (2016) A generalized-growth model to characterize the early ascending phase of infectious disease outbreaks

Thank you for your attention!

E-mail: VNLeonenko@yandex.ru

ARI and flu surveillance in Russia

ARI and flu surveillance in the world

- Russia: weekly ARI reports on a number of cities (49 in total), daily epidemic ARI reports on Saint Petersburg (probably, also Moscow)
- Europe: severe acute respiratory diseases only («influenza-like illness»), incidence is reported on weekly basis
- The USA: not reportable, only pneumonia and influenza mortality

Local model prediction quality

Local model prediction quality

Days till the outbreak peak

Comparison with primitive forecasting

Comparison with primitive forecasting

