Numerical techniques for bioimpedance and ECG modelling

Alexander Danilov

Institute of Numerical Mathematics, Russian Academy of Sciences
Moscow Institute of Physics and Technology
Moscow, Russia

Bioimpedance modelling

Mathematical model

$$
\begin{array}{ll}
\operatorname{div}(\mathrm{C} \nabla U)=0 & \text { in } \Omega \\
\mathrm{J}_{n}= \pm I_{0} / S_{ \pm} & \text {on } \Gamma_{ \pm} \\
\mathrm{J}_{n}=0 & \text { on } \partial \Omega \backslash \Gamma_{ \pm} \\
U \text { - potential field } \\
\mathrm{C} \text { - conductivity (admittivity) tensor } \\
\mathrm{E}=\nabla U \text { - current intensity field } \\
\mathrm{J}=\mathrm{C} \mathrm{E} \text { - current density field } \\
I_{0}-\text { current injection } \\
S_{ \pm}-\text {electrode contact surfaces }
\end{array}
$$

ECG modelling

Bidomain problem

Domain Ω with boundary $\partial \Omega$

$$
\begin{array}{ll}
\chi\left(C_{m} \frac{\partial v}{\partial t}+I_{\text {ion }}(\mathrm{u}, \mathrm{v})\right)-\nabla \cdot\left(\sigma_{i} \nabla\left(v+\phi_{e}\right)\right)=I_{i} & \text { in } \Omega \\
\nabla \cdot\left(\left(\sigma_{i}+\sigma_{e}\right) \nabla \phi_{e}+\sigma_{i} \nabla \mathrm{v}\right)=-I_{\text {total }} & \text { in } \Omega
\end{array}
$$

$\phi_{e}-$ extracellular electrical potential
v - transmembrane voltage
C_{m} - membrane capacitance per unit area
χ - cell membrane surface to volume ratio
$\sigma_{i} \& \sigma_{e}-$ intra- \& extracellular conductivity tensors
I_{i} - intracellular stimulus current
$I_{\text {total }}=I_{i}+I_{e}-$ total stimulus current
u - state variables
$I_{\text {ion }} \& f$ - cellular model

Bidomain problem

Boundary conditions

$$
\begin{aligned}
\mathrm{n} \cdot\left(\sigma_{i} \nabla\left(v+\phi_{e}\right)\right) & =0 & & \text { on } \partial \Omega \\
\mathrm{n} \cdot\left(\sigma_{e} \nabla \phi_{e}\right) & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

"Bidomain with bath" problem

$$
\begin{gathered}
\nabla \cdot\left(\sigma_{b} \nabla \phi_{e}\right)=0 \text { in } \Omega_{b} \\
\mathrm{n} \cdot \sigma_{e} \nabla \phi_{e}=\mathrm{n} \cdot \sigma_{b} \nabla \phi_{e} \quad \text { on } \partial \Omega \\
\mathrm{n} \cdot \sigma_{b} \nabla \phi_{e}=I_{\mathrm{E}}^{\text {surf) }} \quad \text { on } \partial \Omega_{b} \backslash \partial \Omega \\
I_{E}^{\text {surf) }}-\text { external stimulus current }
\end{gathered}
$$

Monodomain problem

Assuming $\sigma_{e}=K \sigma_{i}$

$$
\begin{array}{cc}
\chi\left(C_{m} \frac{\partial v}{\partial t}+I_{\text {ion }}(\mathrm{u}, \mathrm{v})\right)-\nabla \cdot(\sigma \nabla \mathrm{v})=1 & \text { in } \Omega \\
\frac{\partial \mathrm{u}}{\partial t}=\mathrm{f}(\mathrm{u}, \mathrm{v}) & \\
\mathrm{n} \cdot(\sigma \nabla \mathrm{v})=0 & \text { on } \partial \Omega \\
\sigma=\frac{K}{1+K} \sigma_{i} & \\
I-\text { stimulus current } &
\end{array}
$$

Segmentation and mesh

 generation
Technology overview

Segmentation
 Meshing

FEM

ITK-SNAP

Ani3D
A. A. Danilov, D. V. Nikolaev, S. G. Rudnev, V. Yu. Salamatova and Yu. V. Vassilevski, Modelling of bioimpedance measurements: unstructured mesh application to real human anatomy. Russ. J. Numer. Anal. Math. Modelling, 201227 (5), 431-440

ITK-SNAP software

ITK-SNAP (www.itksnap.org)
Free software for Visualization and Segmentation

Visible Human Project, U.S. National Library of Medicine www.nlm.nih.gov/research/visible

High resolution segmented model of VHP torso

$567 \times 305 \times 843$ voxels
$1 \times 1 \times 1 \mathrm{~mm}$
26 organs and tissues

Total 146 m voxels, 68 m material voxels

Unstructured tetrahedral meshes

CGAL Mesh (www.cgal.org) - Delaunay mesh generation Ani3D (sf.net/p/ani3d)-mesh cosmetics

413508 vertices, 2315329 tetraedra, 84430 boundary faces

Full body male and female models

Heart models

3D model of heart, atria and ventricles Visible Human Project data

Solution postprocessing: Bioimpedance

Bioimpedance: sensitivity field

current lines for current-carrying electrodes - Jcc
current lines of reciprocal lead field for pick-up electrodes - J Jeci

sensitivity function
$S=J_{\text {reci }} \cdot J_{\text {cc }}$
$Z_{t}=\int_{v} S(x, y, z) \rho(x, y, z) d v$

Ten-electrode configuration

- Conventional scheme ($\mathrm{I}_{2}-\mathrm{I}_{3}, \mathrm{U}_{2}-\mathrm{U}_{3}$)
- Hands $\left(\mathrm{I}_{2}-\mathrm{I}_{1}, \mathrm{U}_{2}-\mathrm{U}_{3}\right)$ and $\left(\mathrm{I}_{5}-\mathrm{I}_{1}, \mathrm{U}_{5}-\mathrm{U}_{4}\right)$
- Legs $\left(\mathrm{I}_{3}-\mathrm{I}_{2}, \mathrm{U}_{3}-\mathrm{U}_{4}\right)$ and ($\left.\mathrm{I}_{4}-\mathrm{I}_{5}, \mathrm{U}_{4}-\mathrm{U}_{3}\right)$
- Torso $\left(\mathrm{I}_{5}-\mathrm{I}_{3}, \mathrm{U}_{2}-\mathrm{U}_{4}\right)$ and $\left(\mathrm{I}_{5}-\mathrm{I}_{4}, \mathrm{U}_{2}-\mathrm{U}_{3}\right)$
- Head ($\mathrm{I}_{1}-\mathrm{I}_{2}, \mathrm{U}_{1}-\mathrm{U}_{5}$)
- Head+Torso $\left(\mathrm{I}_{1}-\mathrm{I}_{3}, \mathrm{U}_{1}-\mathrm{U}_{4}\right)$

A. A. Danilov, V. K. Kramarenko, D. V. Nikolaev, S. G. Rudnev, V. Yu. Salamatova, A. V. Smirnov and

Yu. V. Vassilevski, Sensitivity field distributions for segmental bioelectrical impedance analysis based on real human anatomy. J. Phys.: Conf. Ser. (2013) 434, 012001, doi: 10.1088/1742-6596/434/1/012001.

Volume impedance density

Sensitivity field
S

Volume impedance density $S \cdot \rho$

Solution postprocessing: ECG signals

Vector model

$\mathrm{q}_{\text {heart }}$ - electrical cardiac vector

$$
\mathrm{q}_{\text {heart }}=\int_{\Omega} \sigma \nabla v \mathrm{~d} V
$$

p - lead projection vector
s - lead signal

$$
s=q_{\text {heart }} \cdot p
$$

Kotikanyadanam M., Göktepe S., Kuhl E. Computational modeling of electrocardiograms: A finite element approach toward cardiac excitation // Int. J. Numer. Meth. Biomed. Engng., 2010, 26: 524-533

Equations

Ω_{0} - human body around heart
$\Gamma_{\text {ext }}$ - external body surface
Γ_{H} - heart-body interface

$$
\begin{array}{ll}
\nabla \cdot\left(\sigma_{0} \nabla \phi_{0}\right)=0 & \text { in } \Omega_{0} \\
\mathrm{n} \cdot \sigma_{0} \nabla \phi_{0}=0 & \text { on } \Gamma_{\mathrm{ext}} \\
\phi_{0}=\phi_{e} & \text { on } \Gamma_{\mathrm{H}}
\end{array}
$$

ϕ_{0} - electrical potential
σ_{0} - conductivity tensor (heterogeneous)

Full human body

VHP model, mesh generated using CGAL Mesh and Ani3D, AniFEM solution, boundary conditions computed using Chaste

Full human body

VHP model, mesh generated using CGAL Mesh and Ani3D, AniFEM solution, boundary conditions computed using Chaste

Lead signal $\mathrm{s}=\phi_{\mathrm{h}} \cdot \mathrm{p}_{\mathrm{h}}, \quad \phi_{\mathrm{h}}-$ cardiac potential, $\mathrm{p}_{\mathrm{h}}-$ precomputed

Conclusions

Work status

Work in progress:

1. ECG: benchmarks
2. ECG: real anatomy

Future plans:

1. ECG: sensitivity analysis
2. Bioimpedance: modelling UI

Conclusions

1. Developed numerical methods for bioimpedance and ECG modelling
2. Proposed efficient tehnique for bidomain ECG signals calculation
3. Preliminary results of ECG modelling are presented

- VHP - www.nlm.nih.gov/research/visible
- ITK-SNAP - www.itksnap.org
- CGAL Mesh - www.cgal. org
- Ani3D - sf.net/p/ani3d
- Chaste - www.cs.ox.ac.uk/chaste

Thank you!

Bidomain numerical scheme

Convergence analysis by A. Chernyshenko

P_{1} FEM on tetrahedral meshes (Ani3D)

Table 1: Bidomain

\#d.o.f.	L^{2}-norm	rate
2801	$1.097 \mathrm{e}-1$	
20417	$3.834 \mathrm{e}-2$	1.58
155905	$1.210 \mathrm{e}-2$	1.70

Table 2: Bidomain with bath

\#d.o.f.	L^{2}-norm	rate
8279	$1.755 \mathrm{e}-1$	
59912	$6.124 \mathrm{e}-2$	1.56
462811	$1.933 \mathrm{e}-2$	1.71

Benchmark solutions
P.Pathmanathan, R.A.Gray, Verification of computational models of cardiac electro-physiology // IJNMBE 2014 30:525-544

BIA Numerical scheme

Bioelectrical conductivity

Typical conductivity parameters @ 50kHz (S/m)

Blood	0.7	$+0.02 \cdot j$	
Muscles	0.36	$+0.035 \cdot j$	
Fat	0.0435	$+0.001 \cdot j$	
Bones	0.021	+	$0.001 \cdot j$
Skin	0.03	+	$0.06 \cdot j$
Heart	0.19	+	$0.045 \cdot j$
Lungs	0.27	+	$0.025 \cdot j$

Gabriel S., Lau R.W., Gabriel C. The dielectric properties of biological tissue: III. Parametric models for the dielectric spectrum of tissues. // Phys.Med.Biol. 1996. V.41(11). P.2271-2293.

$$
\begin{gathered}
\operatorname{div}(C \nabla U)=0 \\
C=C_{R}+j \cdot C_{l}, \quad U=U_{R}+j \cdot U_{l}, \\
\left\{\begin{array}{l}
\operatorname{div}\left(C_{R} \nabla U_{R}\right)-\operatorname{div}\left(C_{1} \nabla U_{l}\right)=0 \\
\operatorname{div}\left(C_{R} \nabla U_{1}\right)+\operatorname{div}\left(C_{V} \nabla U_{R}\right)=0
\end{array}\right. \\
\left(\begin{array}{ll}
A_{R} & -A_{1} \\
A_{1} & A_{R}
\end{array}\right)\binom{x_{R}}{x_{1}}=\binom{b_{R}}{b_{1}}
\end{gathered}
$$

Numerical scheme

$$
\begin{gathered}
\operatorname{div}(C \nabla U)=0 \\
C=C_{R}+j \cdot C_{l}, \quad U=U_{R}+j \cdot U_{l}, \\
\left\{\begin{array}{l}
\operatorname{div}\left(C_{R} \nabla U_{R}\right)-\operatorname{div}\left(C_{l} \nabla U_{l}\right)=0 \\
\operatorname{div}\left(C_{R} \nabla U_{l}\right)+\operatorname{div}\left(C_{l} \nabla U_{R}\right)=0
\end{array}\right. \\
\left(\begin{array}{ll}
A_{R} & -A_{l} \\
A_{1} & A_{R}
\end{array}\right)\binom{x_{R}}{x_{1}}=\binom{b_{R}}{b_{1}}
\end{gathered}
$$

Numerical scheme

$$
\begin{gathered}
\operatorname{div}(C \nabla U)=0 \\
C=C_{R}+j \cdot C_{l}, \quad U=U_{R}+j \cdot U_{l}, \\
\left\{\begin{array}{l}
\operatorname{div}\left(C_{R} \nabla U_{R}\right)-\operatorname{div}\left(C_{l} \nabla U_{l}\right)=0 \\
\operatorname{div}\left(C_{R} \nabla U_{l}\right)+\operatorname{div}\left(C_{l} \nabla U_{R}\right)=0
\end{array}\right. \\
\left(\begin{array}{cc}
A_{R} & -A_{l} \\
A_{l} & A_{R}
\end{array}\right)\binom{x_{R}}{x_{l}}=\binom{b_{R}}{b_{l}}
\end{gathered}
$$

Numerical scheme

$$
\begin{gathered}
\operatorname{div}(C \nabla U)=0 \\
C=C_{R}+j \cdot C_{l}, \quad U=U_{R}+j \cdot U_{l}, \\
\left\{\begin{array}{l}
\operatorname{div}\left(C_{R} \nabla U_{R}\right)-\operatorname{div}\left(C_{l} \nabla U_{l}\right)=0 \\
\operatorname{div}\left(C_{R} \nabla U_{l}\right)+\operatorname{div}\left(C_{l} \nabla U_{R}\right)=0
\end{array}\right. \\
\left(\begin{array}{cc}
A_{R} & -A_{l} \\
A_{l} & A_{R}
\end{array}\right)\binom{x_{R}}{x_{l}}=\binom{b_{R}}{b_{l}}
\end{gathered}
$$

P1 FEM (AniFEM, Ani3D package, sf.net/projects/ani3d)

Convergence analysis

Series of hierarchically refined meshes

N_{V}	N_{T}	Memory, Mb	$N_{i t}$	Time, s	L_{2}-norm
2032	9359	7.16	13	0.02	$1.24 \mathrm{E}-03$
14221	74872	37.3	23	0.18	$9.31 \mathrm{E}-04$
106509	598976	299.1	58	3.70	$5.07 \mathrm{E}-04$
824777	4791808	2437.5	127	68.55	$1.53 \mathrm{E}-04$
6492497	38334464	20015.3	353	2634.15	-

Asymptotically second order convergence

Fast ECG signals calculation

Numerical scheme

Linear system is generated using FEM

$$
\mathrm{Ax}=\mathrm{b}
$$

x - solution vector in Ω_{0} (grid points, length $=n$)
A - symmetric positive definite matrix $n \times n$
b - right hand side, length $=\mathrm{n}, \mathrm{b}=\mathrm{Bg} d$
g_{d} - vector of Dirichlet boundary values, length $=m$
B - RHS operator in FEM model, matrix $n \times m$

$$
\sigma_{i}-G \phi^{h}
$$

$\phi_{e}^{h}-\phi_{e}$ solution vector in Ω (grid points, length $=N$)
G - interpolation operator, matrix $m \times N$

Numerical scheme

Linear system is generated using FEM

$$
\mathrm{Ax}=\mathrm{b}
$$

x - solution vector in Ω_{0} (grid points, length $=n$)
A - symmetric positive definite matrix $n \times n$
b - right hand side, length $=\mathrm{n}, \mathrm{b}=\mathrm{Bg}_{d}$
g_{d} - vector of Dirichlet boundary values, length $=m$
B - RHS operator in FEM model, matrix $n \times m$
$\phi_{e}^{h}-\phi_{e}$ solution vector in Ω (grid points, length $=N$)
G - interpolation operator, matrix $m \times N$

Numerical scheme

Linear system is generated using FEM

$$
\mathrm{Ax}=\mathrm{b}
$$

x - solution vector in Ω_{0} (grid points, length $=n$)
A - symmetric positive definite matrix $n \times n$
b - right hand side, length $=\mathrm{n}, \mathrm{b}=\mathrm{Bg}_{d}$
g_{d} - vector of Dirichlet boundary values, length $=m$
B - RHS operator in FEM model, matrix $n \times m$

$$
\mathrm{g}_{d}=\mathrm{G} \phi_{e}^{h}
$$

$\phi_{e}^{h}-\phi_{e}$ solution vector in Ω (grid points, length $=N$)
G - interpolation operator, matrix $m \times N$

Numerical scheme

Linear system is generated using FEM

$$
\mathrm{Ax}=\mathrm{b}
$$

x - solution vector in Ω_{0} (grid points, length $=n$)
A - symmetric positive definite matrix $n \times n$
b - right hand side, length $=\mathrm{n}, \mathrm{b}=\mathrm{Bg}_{d}$
g_{d} - vector of Dirichlet boundary values, length $=m$
B - RHS operator in FEM model, matrix $n \times m$

$$
\mathrm{g}_{d}=\mathrm{G} \phi_{e}^{h}
$$

$\phi_{e}^{h}-\phi_{e}$ solution vector in Ω (grid points, length $=N$)
G - interpolation operator, matrix $m \times N$

$$
\mathrm{Ax}=\mathrm{BG} \phi_{e}^{h}
$$

Numerical scheme

Lead signals s are computed using ϕ_{0} values in points c_{1}, \ldots, c_{k}.

$$
\mathrm{s}=\mathrm{Sc}_{\mathrm{s}}
$$

s - lead signal vector
$\mathrm{c}_{\mathrm{s}}-\phi_{0}$ vector, length $=k$.
S - computational matrix
Vector C_{s} is interpolated from vector x

Numerical scheme

Lead signals s are computed using ϕ_{0} values in points c_{1}, \ldots, c_{k}.

$$
\mathrm{s}=\mathrm{Sc}_{\mathrm{s}}
$$

$$
\begin{aligned}
& \mathrm{s}-\text { lead signal vector } \\
& \mathrm{c}_{\mathrm{s}}-\phi_{0} \text { vector, length }=k \text {. } \\
& \mathrm{S}-\text { computational matrix }
\end{aligned}
$$

Vector \boldsymbol{c}_{s} is interpolated from vector x

$$
c_{s}=C x_{s}
$$

$$
x_{s} \text { - subvector of } x \text {, length }=K, K \leq 4 k
$$

C - interpolation operator, matrix $k \times K$

Numerical scheme

Lead signals s are computed using ϕ_{0} values in points c_{1}, \ldots, c_{k}.

$$
\mathrm{s}=\mathrm{Sc}_{\mathrm{s}}
$$

$$
\begin{aligned}
& \mathrm{s}-\text { lead signal vector } \\
& \mathrm{c}_{\mathrm{s}}-\phi_{0} \text { vector, length }=k \text {. } \\
& \mathrm{S}-\text { computational matrix }
\end{aligned}
$$

Vector \boldsymbol{c}_{s} is interpolated from vector x

$$
c_{s}=C x_{s}
$$

x_{s} - subvector of x , length $=K, K \leq 4 k$
C - interpolation operator, matrix $k \times K$

$$
s=S C x_{s}
$$

Numerical scheme

Effective computation of partial solution x_{S}

$$
x=A^{-1} b \quad x_{s}=M_{s} b
$$

$M_{s}-K$ rows from matrix A^{-1}, size $K \times n$

Row i or matrix A^{1} is constructed nrom linear system solution

e_{i} - basis vector (all zeros, but one at i-th position)
Matrix M is comnuted using K solutions of initial linear system,
since $A=A$

$$
\mathrm{s}=\mathrm{SCM} \mathrm{SG}_{5} \phi_{e}^{h}=\mathrm{Z} \phi_{e}^{h}
$$

Numerical scheme

Effective computation of partial solution x_{S}

$$
x=A^{-1} b, \quad x_{s}=M_{s} b
$$

$$
M_{s}-K \text { rows from matrix } A^{-1} \text {, size } K \times n
$$

Row i of matrix A^{-1} is constructed from linear system solution

e_{i} - basis vector (all zeros, but one at i-th position)
Matrix M is comnuted using K solutions of initial linear system,
since $A=A$
$\mathrm{s}=\mathrm{SCM}_{5} \mathrm{BG} \phi_{e}^{h}=\mathbf{Z} \phi_{e}^{h}$

Numerical scheme

Effective computation of partial solution x_{S}

$$
x=A^{-1} b, \quad x_{s}=M_{s} b
$$

$M_{s}-K$ rows from matrix A^{-1}, size $K \times n$
Row i of matrix A^{-1} is constructed from linear system solution

$$
\mathrm{A}^{\top} \mathrm{m}_{i}=\mathrm{e}_{i}
$$

\mathbf{e}_{i} - basis vector (all zeros, but one at i-th position)
Matrix M_{S} is computed using K solutions of initial linear system,
since $A=A^{\top}$

Numerical scheme

Effective computation of partial solution x_{s}

$$
x=A^{-1} b, \quad x_{s}=M_{s} b
$$

$M_{s}-K$ rows from matrix A^{-1}, size $K \times n$
Row i of matrix A^{-1} is constructed from linear system solution

$$
\mathrm{A}^{\top} \mathrm{m}_{i}=\mathrm{e}_{i}
$$

\mathbf{e}_{i} - basis vector (all zeros, but one at i-th position)
Matrix M_{s} is computed using K solutions of initial linear system, since $A=A^{\top}$

Numerical scheme

Effective computation of partial solution x_{s}

$$
x=A^{-1} b, \quad x_{s}=M_{s} b
$$

$M_{s}-K$ rows from matrix A^{-1}, size $K \times n$
Row i of matrix A^{-1} is constructed from linear system solution

$$
\mathrm{A}^{\top} \mathrm{m}_{i}=\mathrm{e}_{i}
$$

\mathbf{e}_{i} - basis vector (all zeros, but one at i-th position)
Matrix M_{s} is computed using K solutions of initial linear system, since $A=A^{\top}$

$$
\mathrm{s}=\mathrm{SCM}_{s} \mathrm{BG} \phi_{e}^{h}=\mathrm{Z} \phi_{e}^{h}
$$

Sensitivity fields

Ten-electrode configuration

