Numerical techniques for bioimpedance and ECG modelling

Alexander Danilov

Institute of Numerical Mathematics, Russian Academy of Sciences Moscow Institute of Physics and Technology Moscow, Russia

Bioimpedance modelling

Mathematical model

$\operatorname{div}(\mathbf{C}\nabla U) = 0$	in	Ω
$J_n = \pm I_0/S_\pm$	on	Γ_{\pm}
$J_n = 0$	on	$\partial \Omega \setminus \Gamma_\pm$

- U potential field
- C conductivity (admittivity) tensor
- $\mathbf{E} = \nabla U$ current intensity field
- $\mathbf{J}=\mathbf{C}\;\mathbf{E}$ current density field
- I_0 current injection
- S_\pm electrode contact surfaces

ECG modelling

Bidomain problem

Domain Ω with boundary $\partial \Omega$

$$\chi \left(C_m \frac{\partial v}{\partial t} + l_{ion}(\mathbf{u}, v) \right) - \nabla \cdot (\sigma_i \nabla (v + \phi_e)) = l_i \quad \text{in } \Omega$$

$$\nabla \cdot ((\sigma_i + \sigma_e) \nabla \phi_e + \sigma_i \nabla v) = -l_{total} \quad \text{in } \Omega$$

$$\frac{\partial \mathbf{u}}{\partial t} = \mathbf{f}(\mathbf{u}, v)$$

 ϕ_e – extracellular electrical potential

- v transmembrane voltage
- C_m membrane capacitance per unit area
 - $\chi\,$ cell membrane surface to volume ratio
- $\sigma_i \& \sigma_e$ intra- & extracellular conductivity tensors
 - Ii intracellular stimulus current
 - $I_{\text{total}} = I_i + I_e$ total stimulus current
 - u state variables

Iion & **f** – cellular model

Boundary conditions

$$\begin{array}{rl} \mathsf{n} \cdot (\sigma_i \nabla(\mathsf{v} + \phi_e)) &= 0 & \text{ on } \partial\Omega \\ \mathsf{n} \cdot (\sigma_e \nabla \phi_e) &= 0 & \text{ on } \partial\Omega \end{array}$$

"Bidomain with bath" problem

$$\nabla \cdot (\sigma_b \nabla \phi_e) = 0 \text{ in } \Omega_b$$
$$\mathbf{n} \cdot \sigma_e \nabla \phi_e = \mathbf{n} \cdot \sigma_b \nabla \phi_e \quad \text{ on } \partial \Omega$$
$$\mathbf{n} \cdot \sigma_b \nabla \phi_e = l_E^{(\text{surf})} \quad \text{ on } \partial \Omega_b \setminus \partial \Omega$$

 $I_E^{(surf)}$ – external stimulus current

Assuming $\sigma_e = K \sigma_i$

$$\chi \left(C_m \frac{\partial v}{\partial t} + l_{ion}(\mathbf{u}, \mathbf{v}) \right) - \nabla \cdot (\sigma \nabla \mathbf{v}) = l \quad \text{in } \Omega$$
$$\frac{\partial \mathbf{u}}{\partial t} = \mathbf{f}(\mathbf{u}, \mathbf{v})$$
$$\mathbf{n} \cdot (\sigma \nabla \mathbf{v}) = 0 \qquad \text{on } \partial \Omega$$

$$\sigma = \frac{K}{1+K}\sigma_i$$

I - stimulus current

Segmentation and mesh generation

Technology overview

A. A. Danilov, D. V. Nikolaev, S. G. Rudnev, V. Yu. Salamatova and Yu. V. Vassilevski, Modelling of bioimpedance measurements: unstructured mesh application to real human anatomy. Russ. J. Numer. Anal. Math. Modelling, 2012 27 (5), 431–440

ITK-SNAP software

ITK-SNAP(www.itksnap.org)

Free software for Visualization and Segmentation

Visible Human Project, U.S. National Library of Medicine www.nlm.nih.gov/research/visible

High resolution segmented model of VHP torso

567 \times 305 \times 843 voxels 1 \times 1 \times 1 mm 26 organs and tissues

Total 146m voxels, 68m material voxels

Unstructured tetrahedral meshes

CGAL Mesh (www.cgal.org) – Delaunay mesh generation Ani3D (sf.net/p/ani3d) – mesh cosmetics

413 508 vertices, 2 315 329 tetraedra, 84 430 boundary faces

Full body male and female models

3m tetrahedra

effective resolution: $1 \times 1 \times 1$ mm 30 tissues

3D model of heart, atria and ventricles Visible Human Project data Solution postprocessing: Bioimpedance

Bioimpedance: sensitivity field

current lines for current-carrying electrodes – $J_{\rm cc}$

current lines of reciprocal lead field for pick-up electrodes – $J_{\rm reci}$

sensitivity function $S = \mathbf{J}_{\text{reci}} \cdot \mathbf{J}_{\text{cc}}$ $Z_t = \int_V S(x, y, z) \rho(x, y, z) dv$

- $\cdot\,$ Conventional scheme (I_2-I_3, U_2-U_3)
- $\cdot\,$ Hands (I_2-I_1, U_2-U_3) and (I_5-I_1, U_5-U_4)
- Legs (I_3-I_2, U_3-U_4) and (I_4-I_5, U_4-U_3)
- + Torso (I_5-I_3, U_2-U_4) and (I_5-I_4, U_2-U_3)
- Head (I₁-I₂, U₁-U₅)
- \cdot Head+Torso (I₁-I₃, U₁-U₄)

A. A. Danilov, V. K. Kramarenko, D. V. Nikolaev, S. G. Rudnev, V. Yu. Salamatova, A. V. Smirnov and Yu. V. Vassilevski, Sansitivity field distributions for segmental bioelectrical impedance analysis based on real human anatomy. J. Phys.: Conf. Ser. (2013) 434, 012001, doi: 101088/1742-6596/3431/1012001.

Volume impedance density

Sensitivity field S

Volume impedance density $\mathbf{S}\cdot\boldsymbol{\rho}$

Solution postprocessing: ECG signals

Vector model

 q_{heart} – electrical cardiac vector

$$\mathbf{q}_{\rm heart} = \int_{\Omega} \sigma \nabla \mathbf{v} \, \mathrm{d} \mathbf{V}$$

- **p** lead projection vector
- s lead signal

$$s = q_{\rm heart} \cdot p$$

Kotikanyadanam M., Göktepe S., Kuhl E. *Computational modeling of electrocardiograms: A finite element approach toward cardiac excitation //* Int. J. Numer. Meth. Biomed. Engng., 2010, 26: 524–533

- $\Omega_0\,$ human body around heart
- $\Gamma_{\rm ext}\,$ external body surface
 - Γ_H heart-body interface

$$\begin{aligned} \nabla \cdot (\sigma_0 \nabla \phi_0) &= 0 & \text{ in } \Omega_0 \\ \mathbf{n} \cdot \sigma_0 \nabla \phi_0 &= 0 & \text{ on } \Gamma_{\text{ext}} \\ \phi_0 &= \phi_e & \text{ on } \Gamma_H \end{aligned}$$

- ϕ_0 electrical potential
- σ_0 conductivity tensor (heterogeneous)

Full human body

VHP model, mesh generated using CGAL Mesh and Ani3D, AniFEM solution, boundary conditions computed using Chaste

Lead signal $s = \phi_h \cdot p_h$, ϕ_h – cardiac potential, p_h – precomputed 16/

Full human body

VHP model, mesh generated using CGAL Mesh and Ani3D, AniFEM solution, boundary conditions computed using Chaste Lead signal $s = \phi_h \cdot p_h$, ϕ_h – cardiac potential, p_h – precomputed

Conclusions

Work in progress:

- 1. ECG: benchmarks
- 2. ECG: real anatomy

Future plans:

- 1. ECG: sensitivity analysis
- 2. Bioimpedance: modelling UI

Conclusions

- 1. Developed numerical methods for bioimpedance and ECG modelling
- 2. Proposed efficient tehnique for bidomain ECG signals calculation
- 3. Preliminary results of ECG modelling are presented
 - ・ VHP www.nlm.nih.gov/research/visible
 - ・ ITK-SNAP www.itksnap.org
 - CGAL Mesh www.cgal.org
 - Ani3D sf.net/p/ani3d
 - Chaste www.cs.ox.ac.uk/chaste

Thank you!

Bidomain numerical scheme

P₁ FEM on tetrahedral meshes (Ani3D)

Tabl	e 1: Bidomair	٦	Table 2: E	Bidomain with	n bath
#d.o.f.	L ² -norm	rate	#d.o.f.	L ² -norm	rate
2801	1.097e-1		8279	1.755e-1	
20417	3.834e-2	1.58	59912	6.124e-2	1.56
155905	1.210e-2	1.70	462811	1.933e-2	1.71

Benchmark solutions

P.Pathmanathan, R.A.Gray, Verification of computational models of cardiac electro-physiology // IJNMBE 2014 30:525–544

BIA Numerical scheme

Typical conductivity parameters @ 50kHz (S/m)

Blood	0.7	+	0.02 <i>·j</i>
Muscles	0.36	+	0.035 <i>·j</i>
Fat	0.0435	+	0.001 <i>·j</i>
Bones	0.021	+	0.001 <i>·j</i>
Skin	0.03	+	0.06 <i>·j</i>
Heart	0.19	+	0.045 <i>·j</i>
Lungs	0.27	+	0.025 <i>·j</i>

Gabriel S., Lau R.W., Gabriel C. The dielectric properties of biological tissue: III. Parametric models for the dielectric spectrum of tissues. // Phys.Med.Biol. 1996. V.41(11). P.2271-2293.

$$\mathbf{C} = \mathbf{C}_R + j \cdot \mathbf{C}_I, \quad U = U_R + j \cdot U_I,$$

$$\operatorname{div}(\mathsf{C}_R \nabla U_R) - \operatorname{div}(\mathsf{C}_I \nabla U_I) = 0 \\ \operatorname{div}(\mathsf{C}_R \nabla U_I) + \operatorname{div}(\mathsf{C}_I \nabla U_R) = 0$$

$$\begin{pmatrix} A_R & -A_I \\ A_I & A_R \end{pmatrix} \begin{pmatrix} x_R \\ x_I \end{pmatrix} = \begin{pmatrix} b_R \\ b_I \end{pmatrix}$$

$$\mathbf{C} = \mathbf{C}_R + j \cdot \mathbf{C}_I, \quad U = U_R + j \cdot U_I,$$

$$\begin{cases} \operatorname{div}(\mathsf{C}_R \nabla U_R) - \operatorname{div}(\mathsf{C}_I \nabla U_I) = 0\\ \operatorname{div}(\mathsf{C}_R \nabla U_I) + \operatorname{div}(\mathsf{C}_I \nabla U_R) = 0 \end{cases}$$

$$\begin{pmatrix} A_R & -A_I \\ A_I & A_R \end{pmatrix} \begin{pmatrix} x_R \\ x_I \end{pmatrix} = \begin{pmatrix} b_R \\ b_I \end{pmatrix}$$

$$\mathbf{C} = \mathbf{C}_R + j \cdot \mathbf{C}_I, \quad U = U_R + j \cdot U_I,$$

$$\begin{cases} \operatorname{div}(\mathsf{C}_{R}\nabla U_{R}) - \operatorname{div}(\mathsf{C}_{I}\nabla U_{I}) = 0\\ \operatorname{div}(\mathsf{C}_{R}\nabla U_{I}) + \operatorname{div}(\mathsf{C}_{I}\nabla U_{R}) = 0 \end{cases}$$

$$(A_{P_{R}} - A_{I})(\mathbf{x}_{P})(\mathbf{x}_{P}) = 0$$

$$\begin{pmatrix} A_R & -A_I \\ A_I & A_R \end{pmatrix} \begin{pmatrix} X_R \\ X_I \end{pmatrix} = \begin{pmatrix} b_R \\ b_I \end{pmatrix}$$

$$\mathbf{C} = \mathbf{C}_R + j \cdot \mathbf{C}_I, \quad U = U_R + j \cdot U_I,$$

$$\begin{cases} \operatorname{div}(\mathbf{C}_{R}\nabla U_{R}) - \operatorname{div}(\mathbf{C}_{I}\nabla U_{I}) = 0\\ \operatorname{div}(\mathbf{C}_{R}\nabla U_{I}) + \operatorname{div}(\mathbf{C}_{I}\nabla U_{R}) = 0\\ \begin{pmatrix} A_{R} & -A_{I}\\ A_{I} & A_{R} \end{pmatrix} \begin{pmatrix} x_{R}\\ x_{I} \end{pmatrix} = \begin{pmatrix} b_{R}\\ b_{I} \end{pmatrix} \end{cases}$$

Series of hierarchically refined meshes

N _V	NT	Memory, Mb	N _{it}	Time, s	L ₂ -norm
2032	9359	7.16	13	0.02	1.24E-03
14221	74872	37.3	23	0.18	9.31E-04
106509	598976	299.1	58	3.70	5.07E-04
824777	4791808	2437.5	127	68.55	1.53E-04
6492497	38334464	20015.3	353	2634.15	-

Asymptotically second order convergence

Fast ECG signals calculation

 $\mathsf{A} \mathsf{x} = \mathsf{b}$

- \mathbf{x} solution vector in Ω_0 (grid points, length = n)
- A symmetric positive definite matrix $n \times n$
- **b** right hand side, length = n_r b = Bg_d
- **g**_d vector of Dirichlet boundary values, length = *m*
- **B** RHS operator in FEM model, matrix $n \times m$

$$g_d = G \phi_e^h$$

 $\phi_e^h - \phi_e$ solution vector in Ω (grid points, length = N) G - interpolation operator, matrix $m \times N$

$$Ax = BG\phi_e^h$$

 $\mathsf{A} \mathsf{x} = \mathsf{b}$

- **x** solution vector in Ω_0 (grid points, length = n)
- A symmetric positive definite matrix $n \times n$
- \mathbf{b} right hand side, length = n, $\mathbf{b} = \mathbf{B}\mathbf{g}_d$
- \mathbf{g}_d vector of Dirichlet boundary values, length = m
 - **B** RHS operator in FEM model, matrix $n \times m$

 $\mathbf{g}_d = \mathbf{G}\phi_e^h$

 $\phi_e^h - \phi_e$ solution vector in Ω (grid points, length = N) G - interpolation operator, matrix $m \times N$

 $Ax = BG\phi_e^h$

 $\mathsf{A} \mathsf{x} = \mathsf{b}$

- **x** solution vector in Ω_0 (grid points, length = n)
- A symmetric positive definite matrix $n \times n$
- \mathbf{b} right hand side, length = n, $\mathbf{b} = \mathbf{B}\mathbf{g}_d$
- \mathbf{g}_d vector of Dirichlet boundary values, length = m
 - **B** RHS operator in FEM model, matrix $n \times m$

$$\mathbf{g}_d = \mathbf{G}\phi_e^h$$

- $\phi_e^h \phi_e$ solution vector in Ω (grid points, length = N)
 - ${\bf G}\,$ interpolation operator, matrix $m\times N$

 $Ax = BG\phi_e^h$

 $\mathsf{A} \mathsf{x} = \mathsf{b}$

- **x** solution vector in Ω_0 (grid points, length = n)
- A symmetric positive definite matrix $n \times n$
- \mathbf{b} right hand side, length = n, $\mathbf{b} = \mathbf{B}\mathbf{g}_d$
- \mathbf{g}_d vector of Dirichlet boundary values, length = m
 - **B** RHS operator in FEM model, matrix $n \times m$

$$\mathbf{g}_d = \mathbf{G}\phi_e^h$$

- $\phi_e^h \phi_e$ solution vector in Ω (grid points, length = N)
 - **G** interpolation operator, matrix $m \times N$

$$Ax = BG\phi_e^h$$

Lead signals **s** are computed using ϕ_0 values in points c_1, \ldots, c_k .

 $s=Sc_{\scriptscriptstyle S}$

- **s** lead signal vector
- $\mathbf{c}_{s} \phi_{0}$ vector, length = k.
- S computational matrix

Vector \mathbf{c}_{s} is interpolated from vector x

 $c_s = Cx_s$

 \mathbf{x}_{s} – subvector of \mathbf{x} , length = K, $K \le 4k$ C – interpolation operator, matrix $k \times K$

 $s = SCx_s$

Lead signals **s** are computed using ϕ_0 values in points c_1, \ldots, c_k .

 $s=Sc_{\scriptscriptstyle S}$

- **s** lead signal vector
- $\mathbf{c}_{s} \phi_{0}$ vector, length = k.
- S computational matrix

Vector \mathbf{c}_{s} is interpolated from vector x

 $\mathbf{c}_{\scriptscriptstyle S} = \mathbf{C} \mathbf{x}_{\scriptscriptstyle S}$

- \mathbf{x}_{s} subvector of \mathbf{x} , length = K, K $\leq 4k$
 - **C** interpolation operator, matrix $k \times K$

 $s = SCx_s$

Lead signals **s** are computed using ϕ_0 values in points c_1, \ldots, c_k .

 $s=Sc_{\scriptscriptstyle S}$

- **s** lead signal vector
- $\mathbf{c}_{s} \phi_{0}$ vector, length = k.
- S computational matrix

Vector \mathbf{c}_{s} is interpolated from vector x

$$c_s = C x_s$$

- \mathbf{x}_{s} subvector of \mathbf{x} , length = K, K $\leq 4k$
 - **C** interpolation operator, matrix $k \times K$

$$s = SCx_s$$

Effective computation of partial solution $\boldsymbol{x}_{\text{s}}$

 $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}, \quad \mathbf{x}_{s} = \mathbf{M}_{s}\mathbf{b}$

 $M_s - K$ rows from matrix A^{-1} , size $K \times n$ Row *i* of matrix A^{-1} is constructed from linear system solution $A^{\top}m_i = e_i$

 $\mathbf{e}_i - \mathbf{basis}$ vector (all zeros, but one at *i*-th position) Matrix $\mathbf{M}_{\mathbf{s}}$ is computed using *K* solutions of initial linear system, since $\mathbf{A} = \mathbf{A}^{\top}$

$$s = SCM_sBG\phi_e^h = Z\phi_e^h$$

Effective computation of partial solution \mathbf{x}_{s}

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}, \quad \mathbf{x}_{s} = \mathbf{M}_{s}\mathbf{b}$$

M_s – K rows from matrix A^{-1} , size $K \times n$

Row i of matrix A^{-1} is constructed from linear system solution $A^{\top}\mathbf{m}_i = \mathbf{e}_i$

 $\mathbf{e}_i - \mathbf{basis}$ vector (all zeros, but one at *i*-th position) Matrix $\mathbf{M}_{\mathbf{s}}$ is computed using *K* solutions of initial linear system, since $\mathbf{A} = \mathbf{A}^{\top}$

$$s = SCM_sBG\phi_e^h = Z\phi_e^h$$

Effective computation of partial solution \mathbf{x}_{s}

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}, \quad \mathbf{x}_{s} = \mathbf{M}_{s}\mathbf{b}$$

 $\mathbf{M}_{s} - K$ rows from matrix \mathbf{A}^{-1} , size $K \times n$ Row *i* of matrix \mathbf{A}^{-1} is constructed from linear system solution $\mathbf{A}^{\top}\mathbf{m}_{i} = \mathbf{e}_{i}$

 \mathbf{e}_i – basis vector (all zeros, but one at *i*-th position) Matrix \mathbf{M}_s is computed using *K* solutions of initial linear system since $\mathbf{A} = \mathbf{A}^{\top}$

 $s = SCM_sBG\phi_e^h = Z\phi_e^h$

Effective computation of partial solution \mathbf{x}_{s}

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}, \quad \mathbf{x}_{s} = \mathbf{M}_{s}\mathbf{b}$$

 $\mathbf{M}_{s} - K$ rows from matrix \mathbf{A}^{-1} , size $K \times n$ Row *i* of matrix \mathbf{A}^{-1} is constructed from linear system solution $\mathbf{A}^{\top}\mathbf{m}_{i} = \mathbf{e}_{i}$

 \mathbf{e}_i – basis vector (all zeros, but one at *i*-th position) Matrix \mathbf{M}_s is computed using K solutions of initial linear system, since $\mathbf{A} = \mathbf{A}^{\top}$

$$s = SCM_sBG\phi^h_e = Z\phi^h_e$$

Effective computation of partial solution \mathbf{x}_{s}

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}, \quad \mathbf{x}_{s} = \mathbf{M}_{s}\mathbf{b}$$

 $\mathbf{M}_{s} - K$ rows from matrix \mathbf{A}^{-1} , size $K \times n$ Row *i* of matrix \mathbf{A}^{-1} is constructed from linear system solution $\mathbf{A}^{\top}\mathbf{m}_{i} = \mathbf{e}_{i}$

 \mathbf{e}_i – basis vector (all zeros, but one at *i*-th position) Matrix \mathbf{M}_s is computed using K solutions of initial linear system, since $\mathbf{A} = \mathbf{A}^{\top}$

$$\mathbf{s} = \mathbf{SCM}_{\mathbf{s}}\mathbf{BG}\phi_{e}^{h} = \mathbf{Z}\phi_{e}^{h}$$

Sensitivity fields

