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Bioimpedance modelling



Mathematical model

div(C∇U) = 0 in Ω

Jn = ±I0/S± on Γ±

Jn = 0 on ∂Ω \ Γ±

U – potential field
C – conductivity (admittivity) tensor
E = ∇U – current intensity field
J = C E – current density field
I0 – current injection
S± – electrode contact surfaces
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ECG modelling



Bidomain problem

Domain Ω with boundary ∂Ω

χ

(
Cm

∂v
∂t + Iion(u, v)

)
−∇ · (σi∇(v+ φe)) = Ii in Ω

∇ · ((σi + σe)∇φe + σi∇v) = −Itotal in Ω
∂u
∂t = f(u, v)

φe – extracellular electrical potential
v – transmembrane voltage

Cm – membrane capacitance per unit area
χ – cell membrane surface to volume ratio

σi & σe – intra- & extracellular conductivity tensors
Ii – intracellular stimulus current

Itotal = Ii + Ie – total stimulus current
u – state variables

Iion & f – cellular model
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Bidomain problem

Boundary conditions

n · (σi∇(v+ φe)) = 0 on ∂Ω

n · (σe∇φe) = 0 on ∂Ω

“Bidomain with bath” problem

∇ · (σb∇φe) = 0 in Ωb

n · σe∇φe = n · σb∇φe on ∂Ω

n · σb∇φe = I(surf)
E on ∂Ωb \ ∂Ω

I(surf)
E – external stimulus current

 

∂Ωb    

          ∂Ω 

        Ω                          Ωb 
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Monodomain problem

Assuming σe = Kσi

χ

(
Cm

∂v
∂t + Iion(u, v)

)
−∇ · (σ∇v) = I in Ω

∂u
∂t = f(u, v)
n · (σ∇v) = 0 on ∂Ω

σ = K
1+ Kσi

I – stimulus current
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Segmentation and mesh
generation



Technology overview

Segmentation Meshing FEM

ITK-SNAP CGAL Mesh Ani3D ParaView

A. A. Danilov, D. V. Nikolaev, S. G. Rudnev, V. Yu. Salamatova and Yu. V. Vassilevski, Modelling of bioimpedance measurements: unstructured
mesh application to real human anatomy. Russ. J. Numer. Anal. Math. Modelling, 2012 27 (5), 431–440
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ITK-SNAP software

ITK-SNAP (www.itksnap.org)
Free software for Visualization and Segmentation

Visible Human Project, U.S. National Library of Medicine
www.nlm.nih.gov/research/visible
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High resolution segmented model of VHP torso

567× 305× 843 voxels
1× 1× 1 mm
26 organs and tissues

Total 146m voxels, 68m material voxels
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Unstructured tetrahedral meshes

CGAL Mesh (www.cgal.org) – Delaunay mesh generation
Ani3D (sf.net/p/ani3d) – mesh cosmetics

413 508 vertices, 2 315 329 tetraedra, 84 430 boundary faces
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Full body male and female models

VHP-Man VHP-Woman

3m tetrahedra effective resolution: 1× 1× 1 mm 30 tissues
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Heart models

3D model of heart, atria and ventricles
Visible Human Project data

10/18



Solution postprocessing:
Bioimpedance



Bioimpedance: sensitivity field

current lines for current-carrying
electrodes – Jcc

current lines of reciprocal lead
field for pick-up electrodes – Jreci

sensitivity function
S = Jreci · Jcc
Zt =

∫
V S(x, y, z)ρ(x, y, z)dv
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Ten-electrode configuration

• Conventional scheme (I2-I3, U2-U3)

• Hands (I2-I1, U2-U3) and (I5-I1, U5-U4)
• Legs (I3-I2, U3-U4) and (I4-I5, U4-U3)
• Torso (I5-I3, U2-U4) and (I5-I4, U2-U3)
• Head (I1-I2, U1-U5)
• Head+Torso (I1-I3, U1-U4)

A. A. Danilov, V. K. Kramarenko, D. V. Nikolaev, S. G. Rudnev, V. Yu. Salamatova, A. V. Smirnov and
Yu. V. Vassilevski, Sensitivity field distributions for segmental bioelectrical impedance analysis based on
real human anatomy. J. Phys.: Conf. Ser. (2013) 434, 012001, doi: 10.1088/1742-6596/434/1/012001.
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Volume impedance density

Sensitivity field
S

Volume impedance density
S · ρ
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Solution postprocessing:
ECG signals



Vector model

qheart – electrical cardiac vector

qheart =

∫
Ω

σ∇v dV

p – lead projection vector
s – lead signal

s = qheart · p

, it is the ac-
ith this axial reference

system, a wave of depolarization oriented at
60º produces the greatest positive deflection

in lead II. A wave of depolarization oriented
90º relative to the heart produces equally

positive deflections in both leads II and III. In
the latter case, lead I shows no net deflection
because the wave of depolarization is heading
perpendicular to the 0º, or lead I, axis (see

exist in ad-

I

II
aV

aV  aV

III
F

LR

0° 

+60°
+90°

-30° -150°

+120°

Kotikanyadanam M., Göktepe S., Kuhl E. Computational modeling of
electrocardiograms: A finite element approach toward cardiac
excitation // Int. J. Numer. Meth. Biomed. Engng., 2010, 26: 524–533
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Equations

Ω0 – human body around heart
Γext – external body surface
ΓH – heart-body interface

∇ · (σ0∇φ0) = 0 in Ω0
n · σ0∇φ0 = 0 on Γext
φ0 = φe on ΓH

φ0 – electrical potential
σ0 – conductivity tensor (heterogeneous)
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Full human body

VHP model, mesh generated using CGAL Mesh and Ani3D, AniFEM
solution, boundary conditions computed using Chaste

Lead signal s = φh · ph, φh – cardiac potential, ph – precomputed 16/18
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Conclusions



Work status

Work in progress:

1. ECG: benchmarks
2. ECG: real anatomy

Future plans:

1. ECG: sensitivity analysis
2. Bioimpedance: modelling UI
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Conclusions

1. Developed numerical methods for bioimpedance and ECG
modelling

2. Proposed efficient tehnique for bidomain ECG signals
calculation

3. Preliminary results of ECG modelling are presented

• VHP – www.nlm.nih.gov/research/visible
• ITK-SNAP – www.itksnap.org
• CGAL Mesh – www.cgal.org
• Ani3D – sf.net/p/ani3d
• Chaste – www.cs.ox.ac.uk/chaste

18/18



Thank you!
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Bidomain numerical scheme



Convergence analysis by A. Chernyshenko

P1 FEM on tetrahedral meshes (Ani3D)

Table 1: Bidomain

#d.o.f. L2-norm rate

2801 1.097e-1
20417 3.834e-2 1.58
155905 1.210e-2 1.70

Table 2: Bidomain with bath

#d.o.f. L2-norm rate

8279 1.755e-1
59912 6.124e-2 1.56
462811 1.933e-2 1.71

Benchmark solutions
P.Pathmanathan, R.A.Gray, Verification of computational models of
cardiac electro-physiology // IJNMBE 2014 30:525–544



BIA Numerical scheme



Bioelectrical conductivity

Typical conductivity parameters @ 50kHz (S/m)

Blood 0.7 + 0.02·j
Muscles 0.36 + 0.035·j
Fat 0.0435 + 0.001·j
Bones 0.021 + 0.001·j
Skin 0.03 + 0.06·j
Heart 0.19 + 0.045·j
Lungs 0.27 + 0.025·j

Gabriel S., Lau R.W., Gabriel C. The dielectric properties of biological tissue:
III. Parametric models for the dielectric spectrum of tissues. //
Phys.Med.Biol. 1996. V.41(11). P.2271-2293.



Numerical scheme

div(C∇U) = 0

C = CR + j · CI, U = UR + j · UI,

{
div(CR∇UR)− div(CI∇UI) = 0
div(CR∇UI) + div(CI∇UR) = 0

(
AR −AI
AI AR

)(
xR
xI

)
=

(
bR
bI

)

P1 FEM (AniFEM, Ani3D package, sf.net/projects/ani3d)



Numerical scheme

div(C∇U) = 0

C = CR + j · CI, U = UR + j · UI,

{
div(CR∇UR)− div(CI∇UI) = 0
div(CR∇UI) + div(CI∇UR) = 0

(
AR −AI
AI AR

)(
xR
xI

)
=

(
bR
bI

)

P1 FEM (AniFEM, Ani3D package, sf.net/projects/ani3d)



Numerical scheme

div(C∇U) = 0

C = CR + j · CI, U = UR + j · UI,

{
div(CR∇UR)− div(CI∇UI) = 0
div(CR∇UI) + div(CI∇UR) = 0

(
AR −AI
AI AR

)(
xR
xI

)
=

(
bR
bI

)

P1 FEM (AniFEM, Ani3D package, sf.net/projects/ani3d)



Numerical scheme
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Convergence analysis

Series of hierarchically refined meshes

NV NT Memory, Mb Nit Time, s L2-norm
2032 9359 7.16 13 0.02 1.24E-03
14221 74872 37.3 23 0.18 9.31E-04
106509 598976 299.1 58 3.70 5.07E-04
824777 4791808 2437.5 127 68.55 1.53E-04
6492497 38334464 20015.3 353 2634.15 –

Asymptotically second order convergence



Fast ECG signals calculation



Numerical scheme

Linear system is generated using FEM

Ax = b

x – solution vector in Ω0 (grid points, length = n)
A – symmetric positive definite matrix n× n
b – right hand side, length = n, b = Bgd
gd – vector of Dirichlet boundary values, length = m
B – RHS operator in FEM model, matrix n×m

gd = Gφhe

φhe – φe solution vector in Ω (grid points, length = N)
G – interpolation operator, matrix m× N

Ax = BGφhe
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Numerical scheme

Lead signals s are computed using φ0 values in points c1, . . . , ck.

s = Scs

s – lead signal vector
cs – φ0 vector, length = k.
S – computational matrix

Vector cs is interpolated from vector x

cs = Cxs

xs – subvector of x, length = K, K ≤ 4k
C – interpolation operator, matrix k× K

s = SCxs
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Numerical scheme

Effective computation of partial solution xs
x = A−1b, xs = Msb

Ms – K rows from matrix A−1, size K× n

Row i of matrix A−1 is constructed from linear system solution

A>mi = ei

ei – basis vector (all zeros, but one at i-th position)

Matrix Ms is computed using K solutions of initial linear system,
since A = A>

s = SCMsBGφhe = Zφhe



Numerical scheme

Effective computation of partial solution xs
x = A−1b, xs = Msb

Ms – K rows from matrix A−1, size K× n

Row i of matrix A−1 is constructed from linear system solution

A>mi = ei

ei – basis vector (all zeros, but one at i-th position)

Matrix Ms is computed using K solutions of initial linear system,
since A = A>

s = SCMsBGφhe = Zφhe



Numerical scheme

Effective computation of partial solution xs
x = A−1b, xs = Msb

Ms – K rows from matrix A−1, size K× n

Row i of matrix A−1 is constructed from linear system solution

A>mi = ei

ei – basis vector (all zeros, but one at i-th position)

Matrix Ms is computed using K solutions of initial linear system,
since A = A>

s = SCMsBGφhe = Zφhe



Numerical scheme

Effective computation of partial solution xs
x = A−1b, xs = Msb

Ms – K rows from matrix A−1, size K× n

Row i of matrix A−1 is constructed from linear system solution

A>mi = ei

ei – basis vector (all zeros, but one at i-th position)

Matrix Ms is computed using K solutions of initial linear system,
since A = A>

s = SCMsBGφhe = Zφhe



Numerical scheme

Effective computation of partial solution xs
x = A−1b, xs = Msb

Ms – K rows from matrix A−1, size K× n

Row i of matrix A−1 is constructed from linear system solution

A>mi = ei

ei – basis vector (all zeros, but one at i-th position)

Matrix Ms is computed using K solutions of initial linear system,
since A = A>

s = SCMsBGφhe = Zφhe



Sensitivity fields
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