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Chemotherapy and its drawbacks

Two main types of chemotherapeutic drugs

cytotoxic drugs kill cancer cells

cytostatic drugs lower their proliferation

Two main pitfalls

Resistance to drugs: the cancer cell population acquires resistance

Toxicity to healthy cells: no exclusive targeting of cancer cells
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Objectives of a mathematical modelling approach

Modelling must reproduce the clinical observations that the maximum tolerated
doses

cannot be given for too long because of the side-effects

can lead to the regrowth of the tumour even with further treatment because
resistance has been acquired

It must also provide optimal strategies, to be compared with an emerging
therapeutical paradigm:

Figure : A change of strategy in the war on cancer
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Modelling drug resistance: adaptive dynamics

Heterogeneity inside a solid tumour can be understood through the principles of
Darwinian evolution, which leads to use tools from adaptive dynamics.

We focus on

deterministic models where the structuring variable x is a continuous
phenotype,

because drug resistance can be linked, for example, to DNA methylation
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Introduction to IDEs: starting from ODEs

Start from the logistic model

dN

dt
= [r − dN]N

r : proliferation rate

d N: death rate (increasing with N: intra-specific competition)

What if individuals have different phenotypes?

x : continuous phenotype

r → r(x)

d → d(x)

(Perthame, Transport equations in biology, 2006)
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Introduction to IDEs: typical IDE logistic model

Prototype model, where n(t, x) stands for the density of cells of phenotype
x ∈ [0, 1]:

∂n

∂t
(t, x) =

(
r(x)− d(x)ρ(t)

)
n(t, x)

with

ρ(t) :=

∫ 1

0
n(t, x) dx .
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Introduction to IDEs: typical IDE logistic model

Prototype model, where n(t, x) stands for the density of cells of phenotype
x ∈ [0, 1]:

∂n

∂t
(t, x) =

(
r(x)− d(x)ρ(t)

)
n(t, x)

with

ρ(t) :=

∫ 1

0
n(t, x) dx .

Asymptotic behaviour of

the total population ρ?

the phenotypes in the population (i.e., possible limits for n(t, ·) inM1(0, 1))?

6 / 19



Introduction to IDEs: convergence and concentration

Figure : Plot of t 7→ ρ(t) for r(x) = 2 + x , d(x) = 1 + 2x .
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Introduction to IDEs: convergence and concentration

Figure : Plot of t 7→ ρ(t) for r(x) = 2 + x , d(x) = 1 + 2x .

Theorem
ρ converges to ρ∞ defined as the smallest value such that r(x)− d(x)ρ∞ ≤ 0 on
[0, 1].
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Introduction to IDEs: convergence and concentration

Figure : Plot of x 7→ n(t, x) for different times
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Introduction to IDEs: convergence and concentration

Figure : Plot of x 7→ n(t, x) for different times

Theorem
ρ converges to ρ∞, defined as the smallest value ρ such that r(x)− d(x)ρ ≤ 0 on
[0, 1].
n(t, ·) concentrates on the set

{
x ∈ [0, 1], r(x)− d(x)ρ∞ = 0

}
. Furthermore, if

this set is reduced to a singleton x∞, then

n(t, ·) ⇀ ρ∞δx∞ inM1(0, 1).
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Model construction

∂

∂t
nH(t, x) = [rH(x)− dH(x)ρH(t)] nH(t, x)

∂

∂t
nC (t, x) = [rC (x)− dC (x)ρC (t)] nC (t, x)

x ∈ [0, 1] from 0 (sensitive) to 1 (resistant)

nH(t, x): density of healthy cells of phenotype x .

nC (t, x): density of cancer cells of phenotype x .
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Model construction

∂

∂t
nH(t, x) =

[
rH(x)− dH(x) (aHHρH(t) + aHCρC (t))︸ ︷︷ ︸

=:IH (t)

]
nH(t, x)

∂

∂t
nC (t, x) =

[
rC (x)− dC (x) (aCCρC (t) + aCHρH(t))︸ ︷︷ ︸

=:IC (t)

]
nC (t, x)

Interspecific competition (smaller than intraspecific competition), with

IH = aHHρH + aHCρC , aHC < aHH

IC = aCCρC + aCHρH , aCH < aCC
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Model construction

∂

∂t
nH(t, x) = [rH(x)− dH(x)IH(t)− u1(t)µH(x)] nH(t, x)

∂

∂t
nC (t, x) = [rC (x)− dC (x)IC (t)− u1(t)µC (x)] nC (t, x)

Interspecific competition (smaller than intraspecific competition), with

IH = aHHρH + aHCρC , aHC < aHH

IC = aCCρC + aCHρH , aCH < aCC

Cytotoxic drugs u1
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Model construction

∂

∂t
nH(t, x) =

[
rH(x)

1 + αHu2(t)
− dH(x)IH(t)− u1(t)µH(x)

]
nH(t, x)

∂

∂t
nC (t, x) =

[
rC (x)

1 + αCu2(t)
− dC (x)IC (t)− u1(t)µC (x)

]
nC (t, x)

Interspecific competition (smaller than intraspecific competition), with

IH = aHHρH + aHCρC , aHC < aHH

IC = aCCρC + aCHρH , aCH < aCC

Cytotoxic drugs u1
Cytostatic drugs u2
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Difficulties for the asymptotic analysis of the model

With constant controls, the asymptotic analysis requires to understand systems
of the following type:

∂nH
∂t

(t, x) =
(
rH(x)− dH(x)IH(t)

)
nH(t, x)

∂nC
∂t

(t, x) =
(
rC (x)− dC (x)IC (t)

)
nC (t, x)

(1)

where the coupling comes from IH = aHHρH + aHCρC , IC = aCCρC + aCHρH .

Do we still have convergence for ρH , ρC , and concentration for nH , nC?
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Convergence and concentration hold, and with a wide class
of controls

Theorem

Let u1, u2 be any functions in BV (R+), and let ū1, ū2 be their limits. Then
(ρH(t), ρC (t)) converges to the equilibrium point (ρ∞H , ρ

∞
C ), defined as follows.

Let I∞H ≥ 0 be the smallest nonnegative real number such that

rH(x)

1 + αH ū2
− ū1µH(x) ≤ dH(x)I∞H , (2)

and let I∞C ≥ 0 be the smallest nonnegative real number such that

rC (x)

1 + αC ū2
− ū1µC (x) ≤ dC (x)I∞C . (3)

Then (ρ∞H , ρ
∞
C ) is the unique solution of the (invertible) system

aHHρ
∞
H + aHCρ

∞
C = I∞H ,

aCHρ
∞
H + aCCρ

∞
C = I∞C .

(4)
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Idea of proof for constant controls

Idea of proof

Let

AH :=

{
x ∈ [0, 1],

rH(x)

1 + αH ū2
− ū1µH(x)− dH(x)I∞H = 0

}
AC :=

{
x ∈ [0, 1],

rC (x)

1 + αC ū2
− ū1µC (x)− dC (x)I∞C = 0

}
Choose any tuple of measures (n∞H , n

∞
C ) inM1(0, 1) satisfying∫ 1

0 n∞H,C(x) dx = ρ∞H,C , with supp(n∞H ) ⊂ AH and supp(n∞C ) ⊂ AC .

For mH,C := 1
dH,C

, define the Lyapunov functional as V (t) := λHVH(t) + λCVC (t)

where

VH,C(t) :=

∫ 1

0
mH,C(x)

[
n∞H,C(x) ln

(
1

nH,C(t, x)

)
+
(
nH,C(t, x)− n∞H,C(x)

)]
dx .

(Jabin, Raoul, J. Math. Bio 2011)
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Consequence

If the controls are constant
u1 ≡ ū1, u2 ≡ ū2,

and if
AH = {x∞H }, AC = {x∞C },

then we have a mapping

(ū1, ū2) 7−→ (x∞H , x∞C , ρ∞H , ρ
∞
C )

with ρ∞H δx∞
H

and ρ∞C δx∞
C

the respective limits of nH(t, ·) and nC (t, ·) inM1(0, 1),
as t goes to +∞.

In particular, if we restrict ourselves to constant controls and a large time T ,
the problem of minimising ρC (T ) is equivalent to minimising ρ∞C as a function of
(ū1, ū2).
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Simulations of the effect of constant doses

Figure : Simulation with u1 ≡ 3.5, u2 ≡ 2 and T = 10. (ρCS(t) :=
∫ 1
0 x nC (t, x) dx)
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Optimal control problem

Definition
Let T > 0 be fixed. We define the optimal problem (OCP)

inf
(u1,u2)

ρC (T )

among controls (u1, u2) ∈ BV (0,T )2 such that

0 ≤ u1(t) ≤ umax
1 , 0 ≤ u2(t) ≤ umax

2 .

ρH(t)

ρH(t) + ρC (t)
≥ θHC ,

ρH(t) ≥ θH ρH(0).
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Numerical solution for (OCP)

Figure : Simulation for the solution of (OCP) for T = 60
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Numerical simulations for (OCP): conclusions

Simulations suggest that the optimal strategy for large T consists of two phases:

A first long phase with no cytotoxic drugs and a small constant dose of
cytostatic drugs, at the end of which the cancer cells are concentrated on a
sensible phenotype.

A second short phase with maximum tolerated doses for both drugs, in
order to eradicate the maximal amount of cancer cells, and then a boundary
arc on the constraint ρH = θHρH(0).
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Restriction to a smaller class of controls: an asymptotic
result

We consider the class of controls which are

constant during a long first phase (0,T1)

switch to any controls on a short phase (T1,T ) with T − T1 ≤ TM
2 .

Then, we have the following result (requiring several technical hypotheses):

Theorem
Asymptotically in T1 and for TM

2 small enough, there exists at least one solution
to (OCP) in this class. Furthermore, on (T1,T ) the trajectory obtained with
(u1, u2) is arbitrarily close to the concatenation of at most three arcs:

• a boundary arc along the constraint ρH
ρH+ρC

≥ δH ,

• a free arc with controls u1 = umax
1 and u2 = umax

2 ,

• a boundary arc along the constraint ρH ≥ θHρH(0), with u2 = umax
2 .
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Idea of proof

At the end of the first long phase, the system has concentrated,

thus the dynamics of (ρH , ρC ) is arbitrarily close to being driven by an ODE
system,

then, one can use the Pontryagin Maximum Principle for an optimal control
problem (ODE with state constraints); the optimal strategy has at most three
identifiable arcs.
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