Lomonosov Moscow State University Faculty of Computational Mathematics and Cybernetics

Modeling of lymph flow in the whole net of lymphatic vessels

A.S. Mozokhina, S.I. Mukhin

Goals and tasks

Initial

lymphatics

Lymphodynamic

Interstitial fluid

Thoracic duct 10 - 12 mm He

0 mn

lood circulation

00 mm Ho

Initial lymphatics

Modeling of lymph flow is actual task because

- lymphatic vessels are tracks for immune cells, infections, cancer metastases, drugs;
- lymphatic system (LS) provide additional drainage to veins, and about 10% of blood go to the lymphatic capillaries from the interstitial space
- Our goal is to create quasi-onedimensional model of lymph flow through the whole lymphatic system
- Such model must include:
- model of LS;
- models of lymph flow through all parts of the LS with respect to functional features of these parts

Anatomy and physiology

LS

- is not closed;
- starts with lymphatic capillaries;
- ends in upper vena cava;
- has no strict hierarchy;
- has numerous lymph nodes

Parts of LS

- trunks and ducts;
- collectors;
- lymphatic capillaries;
- lymph nodes

Lymph node

VIII-th conference on mathematical models and numerical methods in biomathematics, INM RAS, Moscow, Russia, October 31 - November 3, 2016 Thoracic

duct (green)

Lymph flow

- low velocity;
- low pressure gradients;

Collector

Initial lymphatic

unidirectional

Lymph

enters to the LS by portions

- \emptyset 1.5 2 mm;
- rare valves, length of lymphangions can reach 5 cm; • active contractions
- active contractions;
- velocity about 0.5 1 cm/s

Parameters Collectors

- \emptyset 3 5 µm to 1 2 mm;
- frequent valves;

"primary" valves

Graph of the LS

- Graph of the LS contains:
- main trunks and ducts;
- main regional groups of lymph nodes;
- afferent and efferent vessels for each node – collectors;
- effective representation of initial lymphatics;
- two exits: to the right and to the left venous angles

There are 543 arcs and 478 vertices in the graph. 161 arcs represent lymph nodes in 46 regional groups

Graph elements

There are 4 groups of elements in the graph characterized by functional differences and features of lymph flow:

- 1. Trunks and ducts: rare valves, active contractions.
- 2. Collectors: frequent valves, active contractions.
- 3. Initial lymphatics: no valves, no contractions, great number;

4. Lymph nodes: active contractions.

S(x,t) – cross-section area, u(x,t) – lymph velocity, p(x,t) – pressure; ρ – density, v – viscosity; x – axial coordinate, t – time

Lymph flow with respect to valves

1 group

rare valves -> can be presented directly on the graph with properly boundary condition:

 $\begin{cases} u_i S_i = u_j S_j, \text{ flow is allowed by valve} \\ u_j S_j = 0, \text{ flow is restricted by valve} \end{cases}$

i – number of afferent vessel j – number of efferent vessel

2 group

frequent valves -> hard to present directly; very close placement of valves -> valve restriction become the property of media -> it can be modeled by specific function of hydrodynamic resistance f_{vlv} in the movement equation:

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + \frac{1}{\rho} \frac{\partial p}{\partial x} = -8\pi v \frac{u}{S} + f_{v l v}$$

 $f_{vlv} = \begin{cases} 0, \text{ flow is allowed by values,} \\ f, \text{ flow is restricted by values} \end{cases}$

Lymph flow with respect to contractions

Such flow in 1, 2 and 4 groups. It can be modeled by following changes in state equation:

$$S(x,t) = S(p,x,t)$$

namely like this:

$$S(x,t) = S(p, pe) = S_0 + \theta(p - p_0) + \theta pe$$

where $pe(x,t)$ – function of external pressure
Problem 1
$$\frac{\partial S}{\partial t} + \frac{\partial uS}{\partial x} = 0, \qquad u(x,t) = \overline{u} + \widetilde{u}(x,t) \\ p(x,t) = \overline{p} + \widetilde{p}(x,t) \\ \frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + \frac{1}{\rho}\frac{\partial p}{\partial x} = 0, \qquad S(x,t) = \overline{S} + \widetilde{S}(x,t) \\ S(x,t) = S(p,x,t) = S_0 + \theta(p - p_0), \\ 0 < x < +\infty, t > 0 \\ u(x,0) = \overline{u} = 0, \\ p(x,0) = \overline{p}, \quad 0 \le x < +\infty, \\ p(x,0) = \overline{p} + A\sin\left(\frac{2\pi}{\lambda}at\right), t \ge 0$$

Exact solution of linear problem

$$\tilde{p}(x,t) = \begin{cases}
0, \ x - (\overline{u} + \overline{c})t \ge 0 \\
A\sin\left(\frac{2\pi}{\lambda}a\left(t - \frac{x}{\overline{u} + \overline{c}}\right)\right), \ x - (\overline{u} + \overline{c})t < 0, \\
0, \ x - (\overline{u} + \overline{c})t \ge 0 \\
\frac{A}{\rho\overline{c}}\sin\left(\frac{2\pi}{\lambda}a\left(t - \frac{x}{\overline{u} + \overline{c}}\right)\right), \ x - (\overline{u} + \overline{c})t < 0
\end{cases}$$

Comparison of exact (red) and numerical (black) solutions of problem 1:

Problem 2

Exact solution of linear problem:

$$\tilde{p}(x,t) = -\frac{A(a-\bar{u})}{2} \left[\frac{\cos\left(\frac{2\pi}{\lambda}(x-at)\right) - \cos\left(\frac{2\pi}{\lambda}(x-\bar{\lambda}^{+}t)\right)}{\bar{\lambda}^{+}-a} + \frac{\cos\left(\frac{2\pi}{\lambda}(x-at)\right) - \cos\left(\frac{2\pi}{\lambda}(x-\bar{\lambda}^{-}t)\right)}{\bar{\lambda}^{-}-a} \right],$$

$$\tilde{u}(x,t) = -\frac{A(a-\bar{u})}{2\rho\bar{c}} \left[\frac{\cos\left(\frac{2\pi}{\lambda}(x-at)\right) - \cos\left(\frac{2\pi}{\lambda}(x-\bar{\lambda}^{+}t)\right)}{\bar{\lambda}^{+}-a} - \frac{\cos\left(\frac{2\pi}{\lambda}(x-at)\right) - \cos\left(\frac{2\pi}{\lambda}(x-\bar{\lambda}^{-}t)\right)}{\bar{\lambda}^{-}-a} \right],$$

$$\tilde{\mu} = \bar{\mu} \pm \bar{c}$$

Flow in initial lymphatics

Binary tree of initial lymphatics is substituted with one effective element with parameters that save flux, pressure gradient and lateral area of the net

Flux in "horizontal" case Results:

Goals:

1. Obtain flux in the system.

steady flow is established. Get

parameters of effective elements

presumable flux by varying

2. Get presumable flux 0.023 ml/s \approx 2 l/day **Initial data:**

Name	d (cm)	S (cm^2)
Effective vessels	0.02	0.00024
Collectors	0.107	0.009
Lumbar trunks	0.15	0.0177
Other trunks	0.1	0.0079
Ducts, lymph nodes	0.2	0.0314
Cisterna Chyli	0.4	0.1257
Pressure gradient = 5 mm Hg ^{0 mm Hg} No valves, no contractions, no gravity		
Calculations in CVSS programs until		

Flux upon time Output flux = 0.0483 ml/s

Flux upon time Output flux = 0.0288 ml/s – is consistent with physiology value

VIII-th conference on mathematical models and numerical methods in biomathematics, INM RAS, Moscow, Russia, October 31 - November 3, 2016

5 mm Ha

Flux in "vertical" case Results:

Goals:

1. Investigate model under gravity influence Flux grows with grow of g

Initial data:

Pressure gradient = 5 mm Hg Valves-vertices, no contractions, gravity force influence

Methods:

Calculations in CVSS program until steady flow on trunks is established. Gravity factor *g* is consequentially increased from 0 cm/s to 900 cm/s

Flux upon time, g = 900. Output flux = 0.2872

Flux upon time, g = 0. Output flux = 0.0288

Flux upon time, g = 100. Output flux = 0.0548

Further increase of *g* is not possible -> valves are not enough for correct modeling in case of gravity influence (vertical state)

VIII-th conference on mathematical models and numerical methods in biomathematics, INM RAS,

Volumetric model

Volume of big vessels is 20 ml. Physiological values for LS are 500 – 1500 ml, and main part of these values is given by periphery vessels. So we want to create model with physiological volume reached by increasing volume of peripheral vessels

Goals:

- 1. Obtain flux in the system.
- 2. Get presumable flux 0.023 ml/s \approx 2 l/day

Initial data:

S of effective vessels = 2.12208 cm²

Volume of LS = 491 ml

Valves-vertices, no contractions, no gravity

Methods:

Calculations in CVSS programs until steady flow is established.

Get presumable flux by varying

pressure gradient

VIII-th conference on mathematical models and numerical methods in biomathematics, INM RAS,

Moscow, Russia, October 31 - November 3, 2016

0 mm Hg

Presumable flux 0.023 ml/s is reached under the pressure gradient 0.1 mm Hg 0.1 mm Hg

Results

- anatomically adequate graph of a whole net of lymphatic vessels was created (!);
- valves in trunks and ducts (valves-vertices) have been implemented in numerical model of lymph flow;
- the model of lymph flow in LS under the pressure gradient has been created. This model gives physiology correct results without gravity influence;
- volumetric model has been created. This model also gives physiology correct results under pressure gradient without gravity;
- analytical solutions have been written to check numerical realization of contraction mechanism;
- it is shown that current mechanisms of regularization are not enough for modeling lymph flow in case of gravity influence

Thank you for attention!