Pulses and waves for reaction-diffusion systems

Martine MARION

École Centrale de Lyon

VIII-th conference on mathematical models and numerical methods in biomathematics, Moscow, October 31, 2016

1 - Introduction - Scalar equations

2 - System of two equations : model problem

3 - More general systems

Application to a model of competition of species

M. Marion and V. Volpert, 'Existence of pulses for a monotone reaction-diffusion system", J. Pure and Applied Functional Analysis, 2016

M. Marion and V. Volpert, 'Existence of pulses for the system of competition of species"

Reaction-diffusion systems

- Unknown : $\mathbf{v} = (v_1, v_2, ..., v_m)$
- Equations

$$\begin{cases} \frac{\partial v_1}{\partial t} = d_1 \frac{\partial^2 v_1}{\partial x^2} + F_1(v_1, v_2, ..., v_m), \\ ... \\ \frac{\partial v_m}{\partial t} = d_m \frac{\partial^2 v_m}{\partial x^2} + F_m(v_1, v_2, ..., v_m) \end{cases}$$

or

$$\frac{\partial \mathbf{v}}{\partial t} = D \frac{\partial^2 \mathbf{v}}{\partial x^2} + \mathbf{F}(\mathbf{v})$$

Applications

- Combustion
- Population dynamics
- Epidemiology
- Physiology

Waves and pulses

$$\frac{\partial \boldsymbol{v}}{\partial t} = D \frac{\partial^2 \boldsymbol{v}}{\partial x^2} + \boldsymbol{F}(\boldsymbol{v}), \quad x \in \mathbb{R}, \quad t > 0$$

Waves

$$\mathbf{v}(x,t) = \mathbf{u}(x - ct) = \mathbf{u}(\xi)$$

$$\begin{cases} D\mathbf{u}'' + c\mathbf{u}' + \mathbf{f}(\mathbf{u}) = \mathbf{0} \\ \mathbf{u}(\infty) = \mathbf{0}, \ \mathbf{u}(-\infty) = \mathbf{1} \\ \mathbf{u} \ge \mathbf{0} \end{cases}$$

Pulses

$$\begin{cases} D\mathbf{w}'' + \mathbf{F}(\mathbf{w}) = \mathbf{0} \\ \mathbf{w}(\infty) = \mathbf{w}(-\infty) = \mathbf{0} \\ \mathbf{w}(x) = \mathbf{w}(-x), \\ \mathbf{w}'(x) < \mathbf{0} \text{ for } x > 0 \end{cases}$$

Bistable case

Bistable case

ullet Existence of a unique wave (u,c)

$$c>0\Leftrightarrow \int_0^1 f(s)ds>0$$

Bistable case

ullet Existence of a unique wave (u,c)

$$c>0 \Leftrightarrow \int_0^1 f(s)ds>0$$

• Existence of a pulse $\Leftrightarrow \int_0^1 f(s) ds > 0$

Bistable case

ullet Existence of a unique wave (u,c)

$$c>0\Leftrightarrow \int_0^1 f(s)ds>0$$

• Existence of a pulse $\Leftrightarrow \int_0^1 f(s) ds > 0$

$$\Leftrightarrow c > 0$$

Systems of equations

Model problem :
$$\begin{cases} \frac{\partial v_1}{\partial t} = \frac{\partial^2 v_1}{\partial x^2} + F_1(v_1, v_2) \\ \frac{\partial v_2}{\partial t} = \frac{\partial^2 v_2}{\partial x^2} + F_2(v_1, v_2) \end{cases}$$
$$F_1(v_1, v_2) = -v_1 + f_1(v_2), \quad F_2(v_1, v_2) = -v_2 + f_2(v_1)$$

Assumptions on the reaction term:

- ullet F has three zeros : (0,0), (1,1) and $\bar{w}=(\bar{w}_1,\bar{w}_2)$, $0<\bar{w}_i<1$
- ullet (0,0) and (1,1) stable, $ar{w}$ unstable
- $f_i' > 0$

Systems of equations

Model problem :
$$\begin{cases} \frac{\partial V_1}{\partial t} = \frac{\partial^2 V_1}{\partial x^2} + F_1(V_1, V_2) \\ \frac{\partial V_2}{\partial t} = \frac{\partial^2 V_2}{\partial x^2} + F_2(V_1, V_2) \end{cases}$$

$$F_1(v_1, v_2) = -v_1 + f_1(v_2), \ F_2(v_1, v_2) = -v_2 + f_2(v_1)$$

Assumptions on the reaction term:

- ullet F has three zeros : (0,0), (1,1) and $\bar{w}=(\bar{w}_1,\bar{w}_2)$, $0<\bar{w}_i<1$
- \bullet (0,0) and (1,1) stable, \bar{w} unstable
- $f_i' > 0$

Systems of equations

Model problem :
$$\begin{cases} \frac{\partial V_1}{\partial t} = \frac{\partial^2 V_1}{\partial x^2} + F_1(V_1, V_2) \\ \frac{\partial V_2}{\partial t} = \frac{\partial^2 V_2}{\partial x^2} + F_2(V_1, V_2) \end{cases}$$

$$F_1(v_1, v_2) = -v_1 + f_1(v_2), \ F_2(v_1, v_2) = -v_2 + f_2(v_1)$$

Assumptions on the reaction term:

- ullet F has three zeros : (0,0), (1,1) and $\bar{w}=(\bar{w}_1,\bar{w}_2)$, $0<\bar{w}_i<1$
- \bullet (0,0) and (1,1) stable, \bar{w} unstable
- $f_i' > 0$

Monotone system

$$\frac{\partial F_i}{\partial V_i}(v_1, v_2) > 0, \quad i \neq j$$

Model problem

Existence and uniqueness

of a wave (*u*, *c*)

Volpert et Al, Trans of AMS 1994

Pulses:
$$w'' + F(w) = 0$$

$$w(\pm \infty) = 0$$

$$w(x) = w(-x), \quad w'(x) < 0 \text{ for } x > 0$$

Existence of a pulse $\Leftrightarrow c > 0$

Sketch of the proof

• Existence of pulse $\Rightarrow c > 0$

$$(\mathcal{P}) \begin{cases} \mathbf{w}'' + \mathbf{F}(\mathbf{w}) = \mathbf{0} \\ \mathbf{w}'(0) = \mathbf{0}, \ \mathbf{w} \ge \mathbf{0}, \ \mathbf{w}(\infty) = \mathbf{0} \end{cases}$$

$$E^{1} = \{ \boldsymbol{w} \in C^{2+\alpha}(\mathbb{R}_{+})^{2}, \ \boldsymbol{w}'(0) = \boldsymbol{0} \}$$

$$E_{\mu}^1=$$
 weighted space, $\mu(x)=\sqrt{1+x^2}$ with norm $\|m{w}\|_{E_{\mu}^1}=\|m{w}\mu\|_{E^1}$

$$(\mathcal{P}) \begin{cases} \mathbf{w}'' + \mathbf{F}(\mathbf{w}) = \mathbf{0} \\ \mathbf{w}'(0) = \mathbf{0}, \ \mathbf{w} \ge \mathbf{0}, \ \mathbf{w}(\infty) = \mathbf{0} \end{cases}$$

$$E^{1} = \{ \boldsymbol{w} \in C^{2+\alpha}(\mathbb{R}_{+})^{2}, \ \boldsymbol{w}'(0) = \boldsymbol{0} \}$$

$$E_{\mu}^1=$$
 weighted space, $\mu(x)=\sqrt{1+x^2}$ with norm $\|m{w}\|_{E_{\mu}^1}=\|m{w}\mu\|_{E^1}$

I - A priori estimates

$$c > 0 \Rightarrow \|\mathbf{w}^M\|_{E^1_n} \leq R$$
 for any monotone solutions \mathbf{w}^M of (\mathcal{P})

$$(\mathcal{P}) \quad \left\{ \begin{array}{c} \mathbf{w}'' + \mathbf{F}(\mathbf{w}) = \mathbf{0} \\ \mathbf{w}'(0) = \mathbf{0}, \quad \mathbf{w} \geq \mathbf{0}, \quad \mathbf{w}(\infty) = \mathbf{0} \end{array} \right.$$

$$E^{1} = \{ \boldsymbol{w} \in C^{2+\alpha}(\mathbb{R}_{+})^{2}, \ \boldsymbol{w}'(0) = \boldsymbol{0} \}$$

$$E_{\mu}^1=$$
 weighted space, $\mu(x)=\sqrt{1+x^2}$ with norm $\|m{w}\|_{E_{\mu}^1}=\|m{w}\mu\|_{E^1}$

I - A priori estimates

$$c>0 \Rightarrow \|\mathbf{w}^M\|_{E^1_\mu} \leq R$$
 for any monotone solutions \mathbf{w}^M of (\mathcal{P})

II - Separation between monotone and non monotone solutions of (\mathcal{P})

$$\|w^{M} - w^{N}\|_{E_{u}^{1}} \ge r > 0, \|w^{M}\|_{E_{u}^{1}} > r > 0$$

$$(\mathcal{P}) \ \left\{ \begin{array}{c} \textbf{\textit{w}}'' + \textbf{\textit{F}}(\textbf{\textit{w}}) = \textbf{\textit{0}} \\ \textbf{\textit{w}}'(\textbf{\textit{0}}) = \textbf{\textit{0}}, \ \textbf{\textit{w}} \geq \textbf{\textit{0}}, \ \textbf{\textit{w}}(\infty) = \textbf{\textit{0}} \end{array} \right.$$

$$E^1 = \{ \mathbf{w} \in C^{2+\alpha}(\mathbb{R}_+)^2, \ \mathbf{w}'(0) = \mathbf{0} \}$$

$$E_{\mu}^1=$$
 weighted space, $\mu(x)=\sqrt{1+x^2}$ with norm $\|m{w}\|_{E_{\mu}^1}=\|m{w}\mu\|_{E^1}$

I - A priori estimates

$$c>0 \Rightarrow \| {m w}^M \|_{E^1_{tr}} \leq R$$
 for any monotone solutions ${m w}^M$ of (\mathcal{P})

II - Separation between monotone and non monotone solutions of (P)

$$||w^{M} - w^{N}||_{E_{tt}^{1}} \ge r > 0, ||w^{M}||_{E_{tt}^{1}} > r > 0$$

III - Topological degree

D bounded subset of E^1_μ containing all monotone solutions but no non-monotone ones and not the trivial one. We want to show that

$$\gamma(A, D) \neq 0$$

→ Homotopy argument

Sketch of the homotopy argument

$$\mathbf{w}'' + \mathbf{F}^{\tau}(\mathbf{w}) = \mathbf{0}, \quad F_1^{\tau}(\mathbf{w}) = -w_1 + f_1^{\tau}(w_2), \quad F_2^{\tau}(\mathbf{w}) = -w_2 + f_2^{\tau}(w_1)$$

Sketch of the homotopy argument

$$\mathbf{w}'' + \mathbf{F}^{\tau}(\mathbf{w}) = \mathbf{0}, \quad F_1^{\tau}(\mathbf{w}) = -w_1 + f_1^{\tau}(w_2), \quad F_2^{\tau}(\mathbf{w}) = -w_2 + f_2^{\tau}(w_1)$$

We need $c^{\tau} > 0$ for $\tau \in [0, 1]$

Sketch of the homotopy argument

$$\mathbf{w}'' + \mathbf{F}^{\tau}(\mathbf{w}) = \mathbf{0}, \quad F_1^{\tau}(\mathbf{w}) = -w_1 + f_1^{\tau}(w_2), \quad F_2^{\tau}(\mathbf{w}) = -w_2 + f_2^{\tau}(w_1)$$

We need $c^{\tau} > 0$ for $\tau \in [0, 1]$

More general systems

$$w_1'' + F_1(w_1, w_2) = 0, \quad w_2'' + F_2(w_1, w_2) = 0.$$

Assumptions on the reaction term:

$$\bullet \ \tfrac{\partial F_i}{\partial w_i}(w) > 0, \quad i,j = 1,2, \quad i \neq j, \quad w = (w_1,w_2) \in \mathbb{R}^2$$

• Three zeros : (0,0), (1,1), $\bar{w} = (\bar{w}_1, \bar{w}_2)$, $0 < \bar{w}_i < 1$

 \bullet zeros of F_1 and F_2

$$\begin{cases} v_1'' + v_1(1 - v_1 - \alpha v_2) = 0 \\ v_2'' + \rho v_2(1 - \beta v_1 - v_2) = 0 \end{cases} \qquad \alpha > 1 \text{ and } \beta > 1$$

$$\begin{cases} v_1'' + v_1(1 - v_1 - \alpha v_2) = 0 \\ v_2'' + \rho v_2(1 - \beta v_1 - v_2) = 0 \end{cases} \qquad \alpha > 1 \text{ and } \beta > 1$$

Monotone system : $w_1 = v_1$ and $w_2 = 1 - v_2$

$$\begin{cases} w_1'' + w_1(1 - w_1 - \alpha(1 - w_2)) = 0 \\ w_2'' + \rho(1 - w_2)(\beta w_1 - w_2) = 0 \end{cases}$$

Monotone system : $w_1 = v_1$ and $w_2 = 1 - v_2$

$$\begin{cases} w_1'' + w_1(1 - w_1 - \alpha(1 - w_2)) = 0 \\ w_2'' + \rho(1 - w_2)(\beta w_1 - w_2) = 0 \end{cases}$$

Perturbed system :
$$\begin{cases} w_1'' + F_1(w_1, w_2) + \epsilon \alpha w_2 = 0 \\ w_2'' + F_2(w_1, w_2) - \epsilon \rho w_2 = 0 \end{cases}$$

Monotone system : $w_1 = v_1$ and $w_2 = 1 - v_2$

$$\begin{cases} w_1'' + w_1(1 - w_1 - \alpha(1 - w_2)) = 0 \\ w_2'' + \rho(1 - w_2)(\beta w_1 - w_2) = 0 \end{cases}$$

Perturbed system :
$$\begin{cases} w_1'' + F_1(w_1, w_2) + \epsilon \alpha w_2 = 0 \\ w_2'' + F_2(w_1, w_2) - \epsilon \rho w_2 = 0 \end{cases}$$

• Existence of a wave $\Leftrightarrow c > 0$

$$\begin{cases} v_1'' + v_1(1 - v_1 - \alpha v_2) = 0 \\ v_2'' + \rho v_2(1 - \beta v_1 - v_2) = 0 \end{cases} \qquad \alpha > 1 \text{ and } \beta > 1$$

Monotone system : $w_1 = v_1$ and $w_2 = 1 - v_2$

$$\begin{cases} w_1'' + w_1(1 - w_1 - \alpha(1 - w_2)) = 0 \\ w_2'' + \rho(1 - w_2)(\beta w_1 - w_2) = 0 \end{cases}$$

Perturbed system :
$$\begin{cases} w_1'' + F_1(w_1, w_2) + \epsilon \alpha w_2 = 0 \\ w_2'' + F_2(w_1, w_2) - \epsilon \rho w_2 = 0 \end{cases}$$

- Existence of a wave $\Leftrightarrow c > 0$
- c > 0 if $\rho = 1$ and $\beta > \alpha$

Thank you for your attention!