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Intro and motivation

• This work has been conducted in active collaboration with Prof. M.
Olshanskii (University of Houston), Prof. Y. Vassilevski, V. Salamatova
(Institute of Numerical Mathematics of Russian Academy of Sciences)
and was supported by the Russian Science Foundation (RSF) grant
14-31-00024

• Understanding fluid-structure interaction is important in many fields of
engineering, such as design of aircraft, bridges, etc. Rigid body models
may not be adequate in applications where sensitivity to oscillations is
crucial.

• Widely used as a base paradigm for the cardiovascular blood flow
numerical studies in physiology and medicine.

• Challenges: treatment of boundary conditions at the interface, mixed
parabolic-hyperbolic nature, coupling of equations, cost considerations.

• We use monolithic approach (fluid + solid = one domain)
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Intro and motivation

Known simplifications:

• 1D FSI simulation with given dependence of the radii of the
vessel on the blood pressure

• 3D Navier-Stokes within rigid walls

• 3D FSI with linear materials

Real caridovascular flow is 3D and the vessel walls are nonlinear!
Costly...
Our method is semi-implicit and unconditionally stable → no
Newton, no severe restriction on time-step.
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FSI problem
Prerequisites

Meshing is performed in the left (initial) domain with coordinates X, while the
right (current) domain is described as x = x(X, t). Notation:

u = x− X(displacement), F = I +∇u, J = det(F), E =
1

2
(FTF− I).

{A}s =
1

2
(A + AT ) (symmetric part of tensor A)

Image taken from Hron J., Turek S. A monolithic FEM/multigrid solver for an ALE formulation of fluid-structure

interaction with applications in biomechanics (2006).



FSI problem
Governing equations in reference subdomains

The kinematic and dynamic equations for the fluid and structure in the
reference domains:

∂u

∂t
= v in Ωs ,

G

(
u,
∂u

∂t

)
= 0 in Ωf (extension of displacement),

∂v

∂t
=

{
ρ−1
s div (JσsF

−T ) in Ωs ,

(Jρf )−1div (Jσf F−T )− (∇v)F−1(v − ∂u
∂t

) in Ωf .
(1)

Constitutive models describing fluid and structure material properties:

σf = −pf I + 2µf {∇vF−1}s in Ωf ,

σs = σs(J,F, ps , λs , µs , . . . ) in Ωs

Incompressibility for fluid:

div (JF−1v) = J∇v : F−T = 0 in Ωf .
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FSI problem
User-dependent equations in reference subdomains

Examples of utilized constitutive relations:

σs =
1

J
F(λstr(E)I + 2µsE)FT , or σs = µsFFT − ps I in Ωs .

For incompressible version of σs , we impose one of the two:

div (JF−1v) = J∇v : F−T = 0 in Ωs(velocity level),

J − 1 = 0 in Ωs(displacement level).

Examples for extension of the displacement field to the fluid domain:

−div (λm(div u)I + µm(∇u +∇uT )) = 0 in Ωf

−∆u = 0 in Ωf
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FSI problem
Boundary conditions

Boundary conditions:

• ∂u
∂t = v on Γfs ,

• σf F−Tn = σsF−Tn on Γfs ,

• v = 0 on Γf ,

• u = 0 on Γf ,

• u = 0 on Γ0
s and σsF−Tn = 0 on Γfree

s .



Numerical scheme

Conforming FE discretization with spaces Vh ⊂ H1(Ωs ∪ Ωf )d and
Qh ⊂ L2(Ωs ∪ Ωf ) satisfying LBB condition.

V0
h = {v ∈ Vh : v|Γfs = 0}

Notation for SVK material:

E(u1, u2) = 1
2

{
F(u1)TF(u2)− I

}
s
,

S(u1, u2) = λstr(E(u1, u2))I + 2µsE(u1, u2).

Then S(u1, u2) = ST (u1, u2) = S(u2, u1).

Seeking solution triple (uk+1, vk+1, pk+1
f ) ∈ Vh × Vh ×Qh at time level k + 1

from the following semi-implicit scheme for the case of SVK material:



Numerical scheme

∫
Ωs

ρs
vk+1 − vk

∆t
ψ dx +

∫
Ωs

F(uk )S(uk+1, uk ) : ∇ψ dx

+

∫
Ωf

ρf J
k−1 vk+1 − vk

∆t
ψ dx +

∫
Ωf

ρf J
k (∇vk+1)F−1(uk )

(
vk −

uk − uk−1

∆t

)
ψ dx

+

∫
Ωf

2µf J
k{(∇vk+1)F−1(uk )}s : {(∇ψ)F−1(uk )}s dx−

∫
Ωf

pk+1
f JkF−T (uk ) : ∇ψ dx

+

∫
Ωf

ρf

2

Jk − Jk−1

∆t
vk+1ψ +

∫
Ωf

ρf

2
div
(
JkF−1(uk )

(
vk −

uk − uk−1

∆t

))
vk+1ψ dx

+

∫
Ωs

H(uk+1, uk ) : ∇φdx = 0 for all ψ ∈ Vh and all φ ∈ V0
h.

∫
Ωs

uk+1 − uk

∆t
φdx−

∫
Ωs

vk+1φdx = 0 for all φ ∈ V0
h (kinematics equation in solid),

∫
Ωf

Jk∇vk+1 : F−T (uk )q dx = 0 for all q ∈ Qh (incompressibility equation in fluid).
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(
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+

∫
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H(uk+1, uk ) : ∇φdx = 0 for all ψ ∈ Vh and all φ ∈ V0
h.

∫
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uk+1 − uk

∆t
φdx−

∫
Ωs

vk+1φdx = 0 for all φ ∈ V0
h (kinematics equation in solid),

∫
Ωf

Jk∇vk+1 : F−T (uk )q dx = 0 for all q ∈ Qh (incompressibility equation in fluid).

Follows from ∂J
∂t

+ div (JF−1(v − ∂u
∂t

)) = 0 in Ωf .



Numerical scheme
In practice

• Higher order time-stepping is possible, such as BDF, etc. The scheme
remains semi-implicit with proper extrapolation in nonlinear terms.

• Various constitutive models for solid beside SVK:

• inc. Blatz–Ko model:

S(u1,u2) = µs(tr({F(u1)TF(u2)}s)I− {F(u1)TF(u2)}s)

• inc. Neo-Hookean model:

S(u1,u2) = µs I; F(uk)→ F(uk+1)

• For incompressible solid, add −
∫

Ωs
pk+1
s JkF−T (uk) : ∇ψ dx to

momentum equation and condition∫
Ωs

Jk∇vk+1 : F−T (uk)q dx = 0 for all q ∈ Qh

• Mass conservation terms are omitted in practice.



Numerical scheme
In practice

Examples of extension:

• Linear elasticity:

−
∫

Ωf

(2µm{∇uk+1}s : ∇φ + λmdiv uk+1divφ) dx

• Harmonic:

−
∫

Ωf

∇uk+1∇φdx

• Heat: ∫
Ωf

uk+1 − uk

∆t
φdx− α

∫
Ωf

∇uk+1∇φdx



Numerical scheme

The scheme

• provides strong coupling on interface

• semi-implicit

• produces linear systems

• supports low and high order time discretizations

• unconditionally stable:

Theorem

Assume that the extension of the Finite Element displacement field to Ωf

is such that Jk > 0 for all k = 1, . . . ,N. Then the solution to the first
order in time FE scheme shown, both for the SVK model and the
incompressible neo-Hookean model, possesses a stability bound depending
on the initial data.

A.Lozovskiy, M.Olshanskii, V.Salamatova, Yu.Vassilevski. An unconditionally stable

semi-implicit FSI finite element method, CMAME, vol. 297, p. 437-454, 2015.
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Validation in 2D: FSI3 benchmark problem

S. Turek and J. Hron. Proposal for numerical benchmarking of fluid-structure

interaction between an elastic object and laminar incompressible flow. In:

Fluid-structure interaction, Springer Berlin Heidelberg, 371–385, 2006.

L = 2.5, H = 0.41, l = 0.35, h = 0.02.

• fluid: 2D transient Navier-Stokes, ρf = 1000, µf = 1

• stick: SVK constitutive relation, ρs = 1000, λs = 4µs = 8 · 106

• outflow: “do-nothing”

• rigid walls: no-slip condition



Validation in 2D: FSI3 benchmark problem

S. Turek and J. Hron. Proposal for numerical benchmarking of fluid-structure

interaction between an elastic object and laminar incompressible flow. In:

Fluid-structure interaction, Springer Berlin Heidelberg, 371–385, 2006.

• inflow: parabolic profile

vx(0, y , t) =
12

0.1681
v(t)y(H − y), y ∈ [0,H],

where

v(t) =


1

2

(
1− cos

(πt

2

))
for t < 2,

1 for t ≥ 2.

• Linear elasticity extension operator for displacement in Ωf

• Taylor-Hood element (P2 + P1) for fluid was used.

• Grad-Div stabilization for fluid.

• Simulations were run using BDF with time step ∆t = 10−3 until T = 8.

• UMFPACK solver for linear systems



Validation in 2D: FSI3 benchmark problem

S. Turek and J. Hron. Proposal for numerical benchmarking of fluid-structure

interaction between an elastic object and laminar incompressible flow. In:

Fluid-structure interaction, Springer Berlin Heidelberg, 371–385, 2006.

Fortran open source software Ani2D

Advanced numerical instruments 2D, http://sf.net/p/ani2d/:

• mesh generation

• FEM discretization

• algebraic solvers

# of cells in Ωf # of cells in Ωs # of DOFs

Mesh 1 8652 162 76557

Mesh 2 17540 334 154242

Mesh 3 35545 658 310997

Displacement in fluid domain:

• Harmonic → mesh tangling

• Linear elasticity with µm = µs and λm = λs → mesh tangling

• Linear elasticity with µm = 20µs and λm = 20λs for adjacent to the beam
elements → OK

http://sf.net/p/ani2d/


Validation in 2D: FSI3 benchmark problem

S. Turek and J. Hron. Proposal for numerical benchmarking of fluid-structure

interaction between an elastic object and laminar incompressible flow. In:

Fluid-structure interaction, Springer Berlin Heidelberg, 371–385, 2006.

Table: computed statistics for FSI3 test for the time interval [7,8]

Mesh/method ux · 103 uy · 103 FD FL

1 −2.8± 2.6 1.5± 34.3 432.9± 22.3 0.98± 152.1
2 −3.0± 2.8 1.4± 35.9 453.8± 26.8 2.6± 154.0
3 −3.0± 2.9 1.4± 36.1 458.0± 27.6 3.0± 154.5

Turek, S. et al [−3.04,−2.84] [1.28, 1.55] [452.4, 474.9] [1.81, 3.86]
±[2.67, 2.87] ±[34.61, 46.63] ±[26.19, 36.63] ±[152.7, 165.9]

Liu, J. −2.91± 2.74 1.46± 35.2 460.3± 27.67 2.41± 157



2D test: blood vessel with aneurysm

S. Turek et al. Numerical simulation and benchmarking of a monolithic multigrid

solver for fluid-structure interaction problems with application to hemodynamics. In:

Fluid Structure Interaction II, Springer Berlin Heidelberg, 193–220, 2010.

• Showing reliability of the semi-implicit scheme for hemodynamic
applications

• Investigating sensitivity to compressibility of the vessel material:
measuring wall shear stress(WSS) since it serves as a good indicator for
the risk of aneurysm rupture



2D test: blood vessel with aneurysm

S. Turek et al. Numerical simulation and benchmarking of a monolithic multigrid

solver for fluid-structure interaction problems with application to hemodynamics. In:

Fluid Structure Interaction II, Springer Berlin Heidelberg, 193–220, 2010.

• Material properties:
ρs µs ρf µf

1.12 · 103 kg/m3 270000 Pa 1.035 · 103 kg/m3 3.4983 · 10−3 Pa · s
• Weakly compressible neo-Hookean model:

σs =
µs

J2

(
FFT − 1

2
tr (FFT )I

)
+

(
λs +

2µs

3

)
(J − 1)I, λs →∞

Extrapolation is used in the model to retain semi-implicitness

• Pulsatile parabolic inflow profile:

v1(0, y , t) = −50(8− y)(y − 6)(1 + 0.75 sin(2πt)), 6 ≤ y ≤ 8.

• λs takes on values 104, 106, 108 kPa, i.e. Poisson’s ratio ν → 0.5.

• Global pressure made of ps and pf is not continuous along the interface
Γfs in general!



2D test: blood vessel with aneurysm

S. Turek et al. Numerical simulation and benchmarking of a monolithic multigrid

solver for fluid-structure interaction problems with application to hemodynamics. In:

Fluid Structure Interaction II, Springer Berlin Heidelberg, 193–220, 2010.

WSS for weakly incompressible and fully incompressible cases, with
unified and disconntected pressure:



3D: silicone filament in glycerol

Benchmark challenge for CMBE 2015, Paris

Meshed volume: original and extended domains.



3D: silicone filament in glycerol
SVK material

M. Landajuela et al. Coupling schemes for the FSI forward prediction challenge:
comparative study and validation. In: Research Report, RR-8824, Inria, 2015,
hal-01239931v2.
• ρs = 1.063 · 10−3 g mm−3, λs = 140.12 kg s−2mm−1, µs = 82.2 kg s−2mm−1,

gravity not neglected!
• Two inflow regimes:

Phase I Phase II
velocity stationary pulsatile
ρf 1.1633 · 10−3 g mm3 1.164 · 10−3 g mm−3

µf 12.5 · 10−3 g mm−1s−1 13.37 · 10−3 g mm−1s−1

• Inflow velocities for one cycle of frequency 1/6 Hz:



3D: silicone filament in glycerol
SVK material

M. Landajuela et al. Coupling schemes for the FSI forward prediction challenge:

comparative study and validation. In: Research Report, RR-8824, Inria, 2015,

hal-01239931v2.

• Simulation was run with ∆t = 10−2 s.

• The filament is lighter than the fluid and deflects upward

• Linear elasticity model is used for the update of the displacement
extension in Ωf ! The PDE model is non-linear due to mapping to
the reference domain. The Lame parameters are heterogeneous, i.e.
element-volume dependent:

λm = 16µm = 16
µs

v1.2
e

.

Software: fortran open source ani3D, analogous to ani2D but for... 3D.
Multi-frontal massively parallel sparse direct solver (MUMPS) was used
on cluster to solve the linear system at every time step.



3D: silicone filament in glycerol
SVK material

M. Landajuela et al. Coupling schemes for the FSI forward prediction challenge:

comparative study and validation. In: Research Report, RR-8824, Inria, 2015,

hal-01239931v2.

# of cells in Ωf # of cells in Ωs # of DOFs

Mesh 1 12916 733 121104

Mesh 2 28712 733 259914

Mesh 3 51496 733 459984



3D: silicone filament in glycerol
SVK material

M. Landajuela et al. Coupling schemes for the FSI forward prediction challenge:

comparative study and validation. In: Research Report, RR-8824, Inria, 2015,

hal-01239931v2.



3D: silicone filament in glycerol
SVK material

M. Landajuela et al. Coupling schemes for the FSI forward prediction challenge:

comparative study and validation. In: Research Report, RR-8824, Inria, 2015,

hal-01239931v2.

The scheme also works with
incompressible neo-Hookean model.
However:

• The first order semi-implicit
discretization appears too
dissipative: insufficiently large
oscillations in phase II.

• The second-order semi-implicit
BDF appears unstable even for
structural tests outside of FSI



Conclusions

• We proposed unconditionally stable semi-implicit ALE FE scheme
for FSI

• Only one linear system is solved per time step

• The scheme can incorporate diverse elasticity models

• Works robustly in 2D and 3D and handles various
time-discretizations

• Drawback: the scheme may suffer from mesh tangling for large
deformations, and the cure is ad-hoc.



Thanks for your attention!


