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Main ideas

» It is possible to solve FEM discretizations of unsteady
Navier—Stokes equations (NSe) for coronary blood flows by
iterative methods

» The preconditioners based on two-parameter ILU(7q, 72) are
better then generic ones

» For coronary blood flows the SUPG-stabilization is usually not
required

» If the blood viscosity is 1.5 times less then SUPG-stabilization is
required (but the linear systems becomes more difficult to solve)

» We solve 1M problems of 3D blood flow on laptop



Prerequisites

>

Unsteady Navier—Stokes equations (NSe) are solved numerically
either by projection methods or by (semi)-implicit methods

In projection methods the velocity is predicted (by
semi-Lagrangian method or convection-diffusion solver) and
then projected

In (semi)-implicit methods an Oseen-type linear system is solved

The solution is difficult for high Reynolds numbers Re = Y

and
FEM discretizations on unstructured 3D meshes

» For instance, block preconditioners (e.g. Kay-Loghin) failed
in simulation of coronary blood flows (Re ~ 10?)

We found in surprise that our public software (anilLU library from
ani2D/ani3D packages) solves the Oseen systems very well

In this talk we present this “discovery”

I.Konshin, M.Olshanskii, and Yu.Vassilevski. ILU preconditioners for
non-symmetric saddle point matrices with application to the incompressible
Navier—Stokes equations. SIAM J.Sci.Comp., 37 (2015)



Prerequisites

Navier—Stokes equations

%—VAU—F(U-V)U—FV,D

divu

u
—v(VU)-n+pn
u(x,0)

f inQx(0,T]
0 inQx|[0,T]
g onlyx|[0,T]
0 only x [0, 7]
Uo(x) in Q

u is the velocity, p is the pressure, v is the kinematic viscosity
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Prerequisites

Implicit time discretization and linearization

au—vAu+(w-Viu+vp=Ff inQ
divu=g inQ
u=0onl;, —-v(Vu)-n+pn=0 only

> w is a known velocity field
> o~ (A1)~ (a = 0 for a steady problem)

» {, § account for non-homogeneous boundary conditions in the nonlinear
problem



Prerequisites

FEM discretization

LetV:={ve H'(Q)® : v|r, =0}.

Given f ¢ V/, the problem is to find u € V and p < [?(Q) such that
Lu,pv,q) = (Fv).+(9,9) VYveV, gel¥Q),

L(u,p;v,q) = a(u,v)+v(Vu,Vv) + ((w-V)u,v) — (p,divv) + (g,divu),

where (-, -) denotes the [2(Q) inner product and (-, -). is the
duality paring for V' x V.



Prerequisites

FEM discretization

Let 7, be a regular tetrahedral mesh: max. 7, diam(r)/p(7) < Cr.

Given conforming FE spaces V, C V and Q, C L?(Q), the
Galerkin FE discretization is:

Find {uy, pn} € Vi x Qp such that
L(Up, iV, qn) = (£,Vh) +(9.9n)  YVh € Vh, gnh € Qp
We use P2-P1 Taylor-Hood FE pair:

> it satisfies the LBB compatibility condition
[Girault,Raviart,1979]

» ensures well-posedness and full approximation order for
the FE linear problem



Prerequisites

FEM discretization

Enumerating velocity unknowns first and pressure unknowns
next, we get the system

(5 %)(5)-(¢)

> uand p represent the discrete velocity and pressure,

> A c R™"is the discretization of the diffusion, convection, and
time-dependent terms,

» BT ¢ R"™%M is the discrete gradient,
> Bis the (negative) discrete divergence,
> C e R™M = (for stabilized FEM pairs C = CT > 0)



LU factorization

Existence of LU factorization

» In general, LU factorization of such matrices requires
pivoting (rows and columns permutations) for stability
reasons.

» Due to block structure and the properties of blocks A and C,
factorization exists without pivoting

A= A BT\ [(Ly O Upn U
S\ B —C ) \ Ly Lx 0 —Ux

once

» A= L11 U11 (holds true for pos.def. A)

> S = BA_1 BT + C = L22 U22 (holds true for pos.def. S)
—1 —1

> U12 = L11 BT, L21 = BU11



LU factorization

Stability of LU factorization
Numerical stability depends on how large is the skew-symmetric

part Ay = A — As of A comparing to the symmetric part
As = 1(A+AT).

Golub,Van Loan,1996: Denote |C| = {|c;|} for a matrix C = {¢;}

1Lstl1Usalle < n (11As]+ [ AvAS Axl)

_1 _1
IANAS ANl < [1As > AvAs 17| All =

Il1L11]|Un1]ll -3 -32
" < 1+ ||Ac 2ANAG 2
||AH —n< H S N/1g H)

Similarly,
[ L22|| Uzl F .
Hireell 7ecllll <« 2 2

Lemma. || Sy 2 SySs ? || < [|As 2 AxAs |



LU factorization
Stability of LU factorization

Let Ca = ||A; * AvAs 2|| and G4 := Amin(As).

Then
[Urellr + [[Latllr _ m(1 + Ca)

Ul +MLalDIBIF = ca

Thus the relative sizes of entries of L and U are bounded if
Ca<Q<o0,ca>q>0.



Stability of LU factorization for the Oseen matrix

What are estimates for stability and ellipticity constants?

1 1
Ca=|AsPANA 2 £ Q Ca = Amin(As) > q



Stability of LU factorization for the Oseen matrix

Let {¢i}1<i<n and {¢;}1<j<m be bases of V, and Q. For any
veRand v, =], vip; it holds

1 1
(AV,v) = al[Val]2 + V[Tl + / (W m)|vy[? ds -+ 5 ((divw)vs, vp)
'n
Difficulties of the estimate:

> often (w-n) < 0ona part of 'y

» often (divw,g,) =0 V g <€ Qn does not imply divw =0
pointwise



Stability of LU factorization for the Oseen matrix

A priori estimates

>

>

>

Trace inequality [ IVh|? ds < Co||VVvp|2 Vv, eV
FE trace inequality [, v2ds < C.h,"||vp||?
Friedrichs inequality ||v,| < Ci||VVh|| Vv, €V,
Inflow for 'y Gy := [[(W - N)_ |1 (ry)

M, K are velocity mass and stiffness matrices, M, is
pressure mass matrix, S = BA~'B’

a~ (AN~
viscosity v
minimal mesh size hyi,

Assume that

CuCih ! < % or CuCo < %

’
Idiv Wl (2) < & max{a,vC; '}



Stability of LU factorization for the Oseen matrix

A priori estimates

Theorem
Under the above assumptions

1 W[ o< ()
Ca > —Amin(aM K <1
A 2 g Amin(aM + vK), Cas i 0 T b

(Av,v) > —((aM + vK)v,v) Vv eR"

Al =

(Mg, q)
Sq,q) 2 : vV qgeR™
< ) (v + o+ W]l e (ry) + [ldiv W[ (0)) (1 + C3) 9




Stability of LU factorization for the Oseen matrix

A priori estimates

Are the assumptions

CuCuh=! < & v

min = 4 or CuwGCo <

9

N

’
Idiv Wz~ () < 7 max{a,vC; '}

feasible?
» If [y = o or Iy is outflow boundary then C,, =0

» Otherwise, CyCy < 7 holds for large v (creeping flows) or
for Courant-type condition ¢ < (At)™" hmin

> [[divwl| <) < C,(H? + (AL)?)

» but one can choose such small At that o/4 > ||divW|| = (q)



Threshold incomplete LU factorization

» any threshold ILU factorization A = LU — E with an error
matrix E

> ||E|| depends on threshold = > 0

» Kaporin,2007: estimates on GMRES convergence in terms
of ||E]|

» Kuznetsov,1968,1969: formulation of GMRES

» Golub,Van Loan,1996: for pos.def. A with ¢4 = \nin(As) LU
is also pos.def. and factorization is numerically stable if
T < can™!

» actual 7 is not that small: non-positive or close to zero
pivots may encounter, resulting in breakdown

> Benzi,2002: review of remedies (pivot modification, diagonal shifting, matrix

scaling, unknowns reordering, Ajiz-Jennings modification)

» our choice: two-sided scaling of matrix



Threshold ILU factorization for positive definite

matrices
Motivation

» Consider (1,1)-block A of the Oseen matrix for small » and
large At, |w]|

> In this case c4 < 1 and C4 > 1
» For the sake of stability - must be smaller and fill-in larger

» Two-parameter Tismenetsky-Kaporin ILU(7, ) factorization
[Kaporin,1998] allows to increase = and reduce fill-in

» ILU(7, 72) was suggested and analyzed for SPD matrices,
but has been applied successfully to general matrices



Two-parameter threshold ILU factorization for positive
definite matrices

|LU(T1, 7'2):
A=LU+LR,+RU-E

» R, and R, are strictly upper and lower triangular matrices:

72<|Ruij|§71 OI‘FT'u/j:O, T2<|Rg,-j|§7'1 Ol‘Rg,'j:O

» U and L are upper and lower triangular matrices:
|U,'j|>7’1 OI‘U,‘/ZO7 |L,’j|>7’1 OI‘L,‘I'ZO

» E is an error matrix with entries of order O(»)

ILU(7) can be viewed as ILU(7, ) with R, = R, = 0 and

TM=T2=T



Two-parameter threshold ILU factorization for positive

definite matrices

|LU(T1, 7'2):
A=LU+ LR, +RU-E

Benefits over a generic ILU(7):

» fill-in of L and U is ruled by 71, while preconditioning quality
is ruled by 7>, once 72 < 7

» for mo = 72 := 72 the fill-in of ILU(74, 72) is similar to ILU(7),
convergence is similar to ILU(72) (caporin,1998:proved for sPD 4, L7 = U,
R = Ru)

» computing L and U factors is more costly than for ILU(7y)
and less expensive than for ILU(72)

» stability of system solution with matrices L,U is ruled by 72
and 7
|LiiUil = ca — [|ReRull — [IE]|

where ||R€Ru|| ~ 7'12’ HEH ~ T2



Algorithmic ideas of ILU(71, 72)

Preprocessing by two-sided scaling

Kaporin,1998: Derivation of ILU(7, 72) in SPD case requires
Ajj =1

Kaporin,2007: In general case one balances (nearly) Euclidean
norms of rows and columns by

A’ = diag(¢)Adiag(r)

Scaling vectors ¢, r ¢ R" are found by Slnkhorn algorithm applied
to F = [A2 iilki—1+ starting with vector ¢ of all ones, perform

diag(r**) = diag(FT¢#))~
diag(¢*k*ty = diag(Frik+D)~T
LU ~A=LU~A L= (diag(t)) 'L, U = U'(diag(r))~"

At least one Sinkhorn iteration is needed for the Oseen matrices

(we take 5)



Algorithmic ideas of ILU(71, 72)

Rowwise ILU(r1, 72) factorization by Sergei Goreinov (ani2D/ani3D packages)

(i + 1)th step (skipping the error matrix):

A g ;\i ri 1 TU Di'
F o F| = |/ N Mi U
* * * _* * *_ L >I<_

L 1 [R, r R Rj u v U

+ | N o 7|+ |7 O T

_* * >k_ L *_ * * * k

scalar (Greek), vectors (Latin lowercase), matrices (Latin uppercase)

a = ('+7\U+/IR],
of = (PP 4+ I+ Ny
ad = (F+7U+ IR+ N@ +7)

IF =y u — N

If » = 7y, ILU(71, 72) is similar to ILUT(n, 71) (Saad,2003)



Numerical experiment: Pipe flow
Cylinder of diameter 1, length 2. Poiseuille flow on inlet, do-nothing

b.c. on outlet, max|w| =1

fill Ly = (nz(L) + nz(U))/ nz(A)

Table : The dependence of ILU(r, 7) performance on 7; v = 1073, o = 1

T fill,y  #it Touila Ti Tcpu
Mesh regular, d.o.f.~~ 300 000
0.080 0.497 94 1.5 10.2 11.7
0.060 0.667 60 1.9 7.3 9.2
0.050 0.793 52 2.3 6.8 9.1
0.040 0.969 49 2.9 7.0 9.9
0.030 1.239 44 3.9 7.2 11.1
0.010 2917 22 12.3 6.1 18.4
0.005 4700 16 25.1 6.2 31.3
0.003 6.472 13 41.6 6.3 47.9
0.001 11.954 9 1155 7.0 1225

filly  #it  Touila Ti Tcpu
Mesh with b.layer, d.o.f.~ 530 000

0.385 129 2.3 233 25.6
0.519 69 29 137 16.6
0.640 62 34 132 16.6
0.798 52 42 1241 16.4
1.003 43 54 112 16.6
2.209 24 15.0 10.0 25.0
3.384 16 28.8 8.9 37.7
4.520 12 46.5 8.2 54.7
8.007 10 _ 1254 10.6 _135.9




Numerical experiment: Pipe flow

Cylinder of diameter 1, length 2. Poiseuille flow on inlet, do-nothing
b.c. on outlet, max|w| =1 fillLy = (nz(L) 4 nz(U))/ nz(A)

v

Topt IS @lmost grid independent

v

Topt IS NOt very sensitive to v and a = (A~ — Topt = 0.03

v

ILU(m1 = 0.03, 72 = 772) is largely comparable to ILU(7opt)

v

at least 1 two-sided balancing iteration is obligatory



Numerical experiment: Pipe flow

Cylinder of diameter 1, length 2. Poiseuille flow on inlet, do-nothing
b.c. on outlet, max|w| =1 fill Ly = (nz(L) 4 nz(U))/ nz(A)

Table : The performance of ILU preconditioners for the pipe flow test
case on the anisotropic mesh

v 1 101 102 10-3 10—4

a: 10 100 10 100 10 100 10 100 10 100
ILU(r = 0.03)
fill, 0.83 0.81 080 070 073 073 1.00 099 191 1.02
#it 177 67 59 36 32 50 43 59 99 136
Tepu 514 196 177 114 107 153 169 205 51.8 41.9
ILU(ry = 0.03,» = 77'12)

fill, 0.86 0.83 083 071 074 071 097 0.88 174 094
#it 127 55 42 29 22 36 32 53 45 83
Tepu 39.7 215 183 131 122 155 242 243 683 343




Numerical experiment: Ethier-Steinman vortex

analog of Taylor vortex problem

Solution to unsteady NSe in [-1,1]% is

uy = -—a(e*sin(ay + dz) + e¥ cos(ax + dy)) e !
W = -—a(e¥sin(az+ dx)+ e¥ cos(ay + dz)) e <!
us = —a(e¥sin(ax+ dy)+ e¥ cos(az + dx)) e %!
p = — 22 (6% 4 ?¥ 4 %% 4 2sin(ax + dy) cos(az + dx)e?V+2)

+2sin(ay + dz) cos(ax + dy)e3*+¥)
+2sin(az + dx) cos(ay + dz)ea(x+y))e—2ud21_

In our experiments we set { = 0.1, a=7/4, d = n/2 and vary v



Numerical experiment: Ethier-Steinman vortex

analog of Taylor vortex problem

Table : The performance of the ILU(r = 0.02),ILU(ry = 0.02, » = 772)
preconditioners for the Ethier—Steinman flow, d.o.f.~ 520 000

v: 1 102 103
a: 1 10 100 1 10 100 1 10 100
fill.y

ILU(T) 1.22 1.22 117 148 1.27 0.97 n/c 6.53 1.89
ILU(Ty, T2) 1.20 120 1.16 1.53 130 096 9.28 5.33 1.80
#it(BCGstab)

ILU(T) 337 296 50 27 22 31 n/c 83 44
ILU(Tq, 7p) 201 158 36 22 24 26 47 38 31
TCPU(BCGstab)

mwu(-) | 1701 149.7 31.0 208 16.7 16.8 n/c 2341 384
LUy, | 93.8 969 357 512 428 351 2174 735 895

for GMRES(30) the results are similar
The two-parameter ILU factorization leads to more efficient preconditioner in
terms of memory usage (fill-in) and iteration counts, compared to the standard
ILU(T).



Numerical experiment

: Flow in right coronary artery

A real patient CT angiography, tetrahedral mesh (120 000 tets),
FE systems with 620 000 d.o.f. generated by ani3D package

thanks to Alexander Danilov, Tatiana Dobroserdova



Numerical experiment: Flow in right coronary artery

0.1 02 0‘3 0.4 0‘5 ﬂ‘ﬁ 07 08 J 0.1 02 03 04 05 06 07 08

(nz{Lynz{UNZ(A}

0.1 02 0‘3 0.4 0‘5 D‘S 07 08 0 0.1 02 03 0.4 05 06 07 08
ime ime

v = 0.04cm?/s, p = 1g/cm, one cardiac cycle period 0.735 s, inlet velocity
waveform from clinical measurements, Dirichlet b.c. with Poiseuille profile (inlet),
Neumann b.c. (outlet)

At=0.005, 7 =0.03, 7 =772

> fill-in rate for the LU-factors repeats the waveform of the inflow velocity

> due to such adaptivity, the variations of the iteration numbers and
computational times per linear solve are rather modest



SUPG-stabilized FEM

Weak formulation:
‘C(u7p;v7q) = (f,V)*+(g7q) VVEV, q€L2(Q)7

L(u,p;v,q) = a(u,v)+v(Vu,Vv) + (w-V)u,v) — (p,divv) + (g, divu)

Given conforming FE spaces V, c Vand Q, C L2(Q), the
SUPG-FE discretization is:

Find {uy, pn} € Vj, x Q4 such that

L(Un, Pn; Vh, qh)+z or(aUp—vAUR+W-VUp+Vpp—f, W-Vvy), =
T7€Th

= (f,vh)« + (9, 9n) YVh € Vp, gnh € Qp

(3%)(2)-(5)



SUPG parameter o,

» Mesh Reynolds number Re, := [|W||.__ - hw/v

= hy _ 1 i
o, = { T 2wl ) (1 Ref)o’ 'I EeT - 1 with 0 <5 < 1.
; ifRe; <1,

» S:=BA'BT + C > 0 and the stability of its LU factorization
is guaranteed if the perturbation £ = B — B is not too large:

k=(1+ CA)EEC;% <1,

where ¢z == |A;ZET|, ¢s = 1Amin(S+ ST).

» x < 1is provided by additional restrictions

h2 ( ah? h
o, < —= 1i+—Z) and 0, < ————— V7T,
T 2vC? vC? T 4w () Ci

l.Konshin, M.OIshanskii, and Yu.Vassilevski. LU factorizations and ILU
preconditioning for stabilized discretizations of incompressible Navier-Stokes

equations. Submitted to Num.Lin.Alg.Appl.



Numerical experiment: Flow in right coronary artery,
different viscosities

Table : The performance of ILU(7y, 72 = 7712). The table shows values
of 71 which allow to run the simulation for the complete cardiac cycle
for different parameters 5. ‘¥’ means finite element solution blow-up,
‘~’ means intractable systems for any possible 7.

v, \ ¢ 0 1/96 1/48 1/24 112 1/6 1/3
cm?/s

0.040 0.03 0.03 0.03 0.03 0.03 0.03 0.003
0.025 %= 0.03 0.03 0.03 0.03 0.003 -




Conclusions

>

We proved numerical stability bounds for the exact LU
factorization of non-symmetric saddle-point matrices

We estimated the dependence of the constants in these
bounds on the flow problem and SUPG-stabilization
parameters

For considered problems, natural u-p ordering of unknowns
and matrix two-side scaling is sufficient for numerically
stable factorizations

Two-parameter threshold ILU(7, 72) likely covers most
laminar flows

Quasi-optimal 7-s can be chosen and successfully used for
a wide range of flow, discretization and stabilization
parameters

The two-parameter ILU preconditioner was applied
successfully in simulation of a blood flow in a right
coronary artery reconstructed from a real patient coronary
CT angiography



