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Main ideas

I It is possible to solve FEM discretizations of unsteady
Navier–Stokes equations (NSe) for coronary blood flows by
iterative methods

I The preconditioners based on two-parameter ILU(τ1, τ2) are
better then generic ones

I For coronary blood flows the SUPG-stabilization is usually not
required

I If the blood viscosity is 1.5 times less then SUPG-stabilization is
required (but the linear systems becomes more difficult to solve)

I We solve 1M problems of 3D blood flow on laptop



Prerequisites
I Unsteady Navier–Stokes equations (NSe) are solved numerically

either by projection methods or by (semi)-implicit methods

I In projection methods the velocity is predicted (by
semi-Lagrangian method or convection-diffusion solver) and
then projected

I In (semi)-implicit methods an Oseen-type linear system is solved

I The solution is difficult for high Reynolds numbers Re = UL
ν and

FEM discretizations on unstructured 3D meshes
I For instance, block preconditioners (e.g. Kay-Loghin) failed

in simulation of coronary blood flows (Re ∼ 102)

I We found in surprise that our public software (aniILU library from
ani2D/ani3D packages) solves the Oseen systems very well

I In this talk we present this “discovery”

I.Konshin, M.Olshanskii, and Yu.Vassilevski. ILU preconditioners for
non-symmetric saddle point matrices with application to the incompressible
Navier–Stokes equations. SIAM J.Sci.Comp., 37 (2015)



Prerequisites
Navier–Stokes equations

∂u
∂t
− ν∆u + (u · ∇)u +∇p = f in Ω× (0,T ]

div u = 0 in Ω× [0,T ]

u = g on Γ0 × [0,T ]

−ν(∇u) · n + pn = 0 on ΓN × [0,T ]

u(x,0) = u0(x) in Ω

u is the velocity, p is the pressure, ν is the kinematic viscosity

∂Ω = Γ0 ∪ ΓN and Γ0 6= ∅



Prerequisites
Implicit time discretization and linearization

αu− ν∆u + (w · ∇)u +∇p = f̂ in Ω

div u = ĝ in Ω

u = 0 on Γ0, −ν(∇u) · n + pn = 0 on ΓN

I w is a known velocity field

I α ∼ (∆t)−1 (α = 0 for a steady problem)

I f̂, ĝ account for non-homogeneous boundary conditions in the nonlinear
problem



Prerequisites
FEM discretization

Let V := {v ∈ H1(Ω)3 : v|Γ0 = 0}.

Given f ∈ V′, the problem is to find u ∈ V and p ∈ L2(Ω) such that

L(u,p; v,q) = (f,v)∗ + (g,q) ∀ v ∈ V, q ∈ L2(Ω) ,

L(u,p; v,q) := α(u,v) + ν(∇u,∇v) + ((w · ∇) u,v)− (p, div v) + (q, div u) ,

where (·, ·) denotes the L2(Ω) inner product and (·, ·)∗ is the
duality paring for V′ × V.



Prerequisites
FEM discretization

Let Th be a regular tetrahedral mesh: maxτ∈Th diam(τ)/ρ(τ) ≤ CT .

Given conforming FE spaces Vh ⊂ V and Qh ⊂ L2(Ω), the
Galerkin FE discretization is:

Find {uh,ph} ∈ Vh ×Qh such that

L(uh,ph; vh,qh) = (f,vh)∗ + (g,qh) ∀vh ∈ Vh, qh ∈ Qh

We use P2-P1 Taylor–Hood FE pair:

I it satisfies the LBB compatibility condition
[Girault,Raviart,1979]

I ensures well-posedness and full approximation order for
the FE linear problem



Prerequisites
FEM discretization

Enumerating velocity unknowns first and pressure unknowns
next, we get the system(

A BT

B −C

)(
u
p

)
=

(
f
g

)

I u and p represent the discrete velocity and pressure,

I A ∈ Rn×n is the discretization of the diffusion, convection, and
time-dependent terms,

I BT ∈ Rn×m is the discrete gradient,

I B is the (negative) discrete divergence,

I C ∈ Rm×m = 0 (for stabilized FEM pairs C = CT ≥ 0)



LU factorization
Existence of LU factorization

I In general, LU factorization of such matrices requires
pivoting (rows and columns permutations) for stability
reasons.

I Due to block structure and the properties of blocks A and C,
factorization exists without pivoting

A =

(
A BT

B −C

)
=

(
L11 0
L21 L22

)(
U11 U12
0 −U22

)
once

I A = L11U11 (holds true for pos.def. A)

I S := BA−1BT + C = L22U22 (holds true for pos.def. S)

I U12 = L−1
11 BT , L21 = BU−1

11



LU factorization
Stability of LU factorization

Numerical stability depends on how large is the skew-symmetric
part AN = A− AS of A comparing to the symmetric part
AS = 1

2 (A + AT ).

Golub,Van Loan,1996: Denote |C| = {|cij |} for a matrix C = {cij}

‖|L11||U11|‖F ≤ n
(
‖AS‖+ ‖ANA−1

S AN‖
)

‖ANA−1
S AN‖ ≤ ‖A

− 1
2

S ANA−
1
2

S ‖
2‖A‖ ⇒

‖|L11||U11|‖F

‖A‖
≤ n

(
1 + ‖A−

1
2

S ANA−
1
2

S ‖
2
)

Similarly,
‖|L22||U22|‖F

‖S‖
≤ m

(
1 + ‖S−

1
2

S SNS−
1
2

S ‖
2
)

Lemma. ‖S−
1
2

S SNS−
1
2

S ‖ ≤ ‖A
− 1

2
S ANA−

1
2

S ‖



LU factorization
Stability of LU factorization

Let CA := ‖A−
1
2

S ANA−
1
2

S ‖ and cA := λmin(AS).

Then
‖U12‖F + ‖L21‖F

(‖U11‖+ ‖L11‖)‖B‖F
≤ m(1 + CA)

cA

Thus the relative sizes of entries of L and U are bounded if
CA ≤ Q <∞, cA ≥ q > 0.



Stability of LU factorization for the Oseen matrix

What are estimates for stability and ellipticity constants?

CA = ‖A−
1
2

S ANA−
1
2

S ‖ ≤ Q cA = λmin(AS) ≥ q



Stability of LU factorization for the Oseen matrix

Let {ϕi}1≤i≤n and {ψj}1≤j≤m be bases of Vh and Qh. For any
v ∈ Rn and vh =

∑n
i=1 viϕi it holds

〈Av , v〉 = α‖vh‖2 + ν‖∇vh‖2 +
1
2

∫
ΓN

(w · n)|vh|2 ds +
1
2

((div w)vh,vh)

Difficulties of the estimate:

I often (w · n) < 0 on a part of ΓN

I often (div w,qh) = 0 ∀ q ∈ Qh does not imply div w = 0
pointwise



Stability of LU factorization for the Oseen matrix
A priori estimates

I Trace inequality
∫

ΓN
|vh|2 ds ≤ C0‖∇vh‖2 ∀ vh ∈ Vh

I FE trace inequality
∫
∂τ

v2
h ds ≤ Ctrh−1

τ ‖vh‖2
τ

I Friedrichs inequality ‖vh‖ ≤ Cf‖∇vh‖ ∀ vh ∈ Vh

I Inflow for ΓN Cw := ‖(w · n)−‖L∞(ΓN)

I M,K are velocity mass and stiffness matrices, Mp is
pressure mass matrix, S = BA−1BT

I α ∼ (∆t)−1

I viscosity ν

I minimal mesh size hmin

I Assume that

CwCtrh−1
min ≤

α

4
or CwC0 ≤

ν

4
,

‖div w‖L∞(Ω) ≤
1
4

max{α, νC−1
f }



Stability of LU factorization for the Oseen matrix
A priori estimates

Theorem
Under the above assumptions

cA ≥
1
4
λmin(αM + νK ), CA . 1 +

‖w‖L∞(Ω)√
να + ν + hminα

〈Av , v〉 ≥ 1
4
〈(αM + νK )v , v〉 ∀ v ∈ Rn

〈Sq,q〉 &
〈Mpq,q〉

(ν + α + ‖w‖L∞(ΓN) + ‖div w‖L∞(Ω))(1 + C2
A)
∀ q ∈ Rm



Stability of LU factorization for the Oseen matrix
A priori estimates

Are the assumptions

CwCtrh−1
min ≤

α

4
or CwC0 ≤

ν

4
,

‖div w‖L∞(Ω) ≤
1
4

max{α, νC−1
f }

feasible?

I If ΓN = ∅ or ΓN is outflow boundary then Cw = 0

I Otherwise, CwC0 ≤ ν
4 holds for large ν (creeping flows) or

for Courant-type condition c ≤ (∆t)−1hmin

I ‖div w‖L∞(Ω) ≤ C̃ν(h2 + (∆t)2)

I but one can choose such small ∆t that α/4 ≥ ‖div w‖L∞(Ω)



Threshold incomplete LU factorization

I any threshold ILU factorization A = LU − E with an error
matrix E

I ‖E‖ depends on threshold τ > 0

I Kaporin,2007: estimates on GMRES convergence in terms
of ‖E‖

I Kuznetsov,1968,1969: formulation of GMRES

I Golub,Van Loan,1996: for pos.def. A with cA = λmin(AS) LU
is also pos.def. and factorization is numerically stable if
τ < cAn−1

I actual τ is not that small: non-positive or close to zero
pivots may encounter, resulting in breakdown

I Benzi,2002: review of remedies (pivot modification, diagonal shifting, matrix

scaling, unknowns reordering, Ajiz-Jennings modification)

I our choice: two-sided scaling of matrix



Threshold ILU factorization for positive definite
matrices
Motivation

I Consider (1,1)-block A of the Oseen matrix for small ν and
large ∆t , ‖w‖

I In this case cA � 1 and CA � 1

I For the sake of stability τ must be smaller and fill-in larger

I Two-parameter Tismenetsky-Kaporin ILU(τ1, τ2) factorization
[Kaporin,1998] allows to increase τ and reduce fill-in

I ILU(τ1, τ2) was suggested and analyzed for SPD matrices,
but has been applied successfully to general matrices



Two-parameter threshold ILU factorization for positive
definite matrices

ILU(τ1, τ2):
A = LU + LRu + R`U − E

I Ru and R` are strictly upper and lower triangular matrices:

τ2 < |Ruij | ≤ τ1 or Ruij = 0, τ2 < |R` ij | ≤ τ1 or R` ij = 0

I U and L are upper and lower triangular matrices:

|Uij | > τ1 or Uij = 0, |Lij | > τ1 or Lij = 0

I E is an error matrix with entries of order O(τ2)

ILU(τ ) can be viewed as ILU(τ1, τ2) with Ru = R` = 0 and
τ1 = τ2 = τ



Two-parameter threshold ILU factorization for positive
definite matrices

ILU(τ1, τ2):
A = LU + LRu + R`U − E

Benefits over a generic ILU(τ ):

I fill-in of L and U is ruled by τ1, while preconditioning quality
is ruled by τ2, once τ2

1 . τ2

I for τ2 = τ2
1 := τ2 the fill-in of ILU(τ1, τ2) is similar to ILU(τ ),

convergence is similar to ILU(τ2) (Kaporin,1998:proved for SPD A, LT = U,

RT
` = Ru )

I computing L and U factors is more costly than for ILU(τ1)
and less expensive than for ILU(τ2)

I stability of system solution with matrices L,U is ruled by τ2
1

and τ2
|LiiUii | ≥ cA − ‖R`Ru‖ − ‖E‖

where ‖R`Ru‖ ∼ τ2
1 , ‖E‖ ∼ τ2



Algorithmic ideas of ILU(τ1, τ2)
Preprocessing by two-sided scaling

Kaporin,1998: Derivation of ILU(τ1, τ2) in SPD case requires
Aii = 1

Kaporin,2007: In general case one balances (nearly) Euclidean
norms of rows and columns by

A′ = diag(`)A diag(r)

Scaling vectors `, r ∈ Rn are found by Sinkhorn algorithm applied
to F = [A2

kj ]
n
kj=1: starting with vector `(0) of all ones, perform

diag(r (k+1)) = diag(F T `(k))−1,

diag(`(k+1)) = diag(Fr (k+1))−1,

L′U ′ ≈ A′ ⇒ LU ≈ A, L = (diag(`))−1L′, U = U ′(diag(r))−1

At least one Sinkhorn iteration is needed for the Oseen matrices
(we take 5)



Algorithmic ideas of ILU(τ1, τ2)
Rowwise ILU(τ1, τ2) factorization by Sergei Goreinov (ani2D/ani3D packages)

(i + 1)th step (skipping the error matrix):Ai ai Ãi

âi αi ãi

∗ ∗ ∗

 =

Li

l i λi

∗ ∗ ∗

U i ui Ũ i

µi ũi

∗


+

Li

l i λi

∗ ∗ ∗

R i
u r i R̃ i

0 r̃ i

∗

+

R i
`

r̂ i 0
∗ ∗ ∗

U i ui Ũ i

µi ũi

∗


scalar (Greek), vectors (Latin lowercase), matrices (Latin uppercase)

âi = (l i + r̂ i )U i + l iR i
u,

αi = (l i + r̂ i )ui + l i r i + λiµi ,

ãi = (l i + r̂ i )Ũ i + l i R̃ i
u + λi (ũi + r̃ i )

l i , r̂ i → µi , ũi → λi

If τ2 = τ1, ILU(τ1, τ2) is similar to ILUT(n, τ1) (Saad,2003)



Numerical experiment: Pipe flow
Cylinder of diameter 1, length 2. Poiseuille flow on inlet, do-nothing
b.c. on outlet, max |w| = 1 fillLU = (nz(L) + nz(U))/ nz(A)

Table : The dependence of ILU(τ, τ ) performance on τ ; ν = 10−3, α = 1
τ fillLU #it Tbuild Tit TCPU fillLU #it Tbuild Tit TCPU

Mesh regular, d.o.f.∼ 300 000 Mesh with b.layer, d.o.f.∼ 530 000
0.080 0.497 94 1.5 10.2 11.7 0.385 129 2.3 23.3 25.6
0.060 0.667 60 1.9 7.3 9.2 0.519 69 2.9 13.7 16.6
0.050 0.793 52 2.3 6.8 9.1 0.640 62 3.4 13.2 16.6
0.040 0.969 49 2.9 7.0 9.9 0.798 52 4.2 12.1 16.4
0.030 1.239 44 3.9 7.2 11.1 1.003 43 5.4 11.2 16.6
0.010 2.917 22 12.3 6.1 18.4 2.209 24 15.0 10.0 25.0
0.005 4.700 16 25.1 6.2 31.3 3.384 16 28.8 8.9 37.7
0.003 6.472 13 41.6 6.3 47.9 4.520 12 46.5 8.2 54.7
0.001 11.954 9 115.5 7.0 122.5 8.007 10 125.4 10.6 135.9



Numerical experiment: Pipe flow

Cylinder of diameter 1, length 2. Poiseuille flow on inlet, do-nothing
b.c. on outlet, max |w| = 1 fillLU = (nz(L) + nz(U))/ nz(A)

I τopt is almost grid independent

I τopt is not very sensitive to ν and α = (∆t)−1 → τopt = 0.03

I ILU(τ1 = 0.03, τ2 = 7τ2
1 ) is largely comparable to ILU(τopt )

I at least 1 two-sided balancing iteration is obligatory



Numerical experiment: Pipe flow
Cylinder of diameter 1, length 2. Poiseuille flow on inlet, do-nothing
b.c. on outlet, max |w| = 1 fillLU = (nz(L) + nz(U))/ nz(A)

Table : The performance of ILU preconditioners for the pipe flow test
case on the anisotropic mesh

ν: 1 10−1 10−2 10−3 10−4

α: 10 100 10 100 10 100 10 100 10 100
ILU(τ = 0.03)

fillLU 0.83 0.81 0.80 0.70 0.73 0.73 1.00 0.99 1.91 1.02
#it 177 67 59 36 32 50 43 59 99 136

TCPU 51.4 19.6 17.7 11.4 10.7 15.3 16.9 20.5 51.8 41.9
ILU(τ1 = 0.03, τ2 = 7τ2

1 )
fillLU 0.86 0.83 0.83 0.71 0.74 0.71 0.97 0.88 1.74 0.94

#it 127 55 42 29 22 36 32 53 45 83
TCPU 39.7 21.5 18.3 13.1 12.2 15.5 24.2 24.3 68.3 34.3



Numerical experiment: Ethier-Steinman vortex

analog of Taylor vortex problem

Solution to unsteady NSe in [−1,1]3 is

u1 = −a (eax sin(ay + dz) + eaz cos(ax + dy)) e−νd2t

u2 = −a (eay sin(az + dx) + eax cos(ay + dz)) e−νd2t

u3 = −a (eaz sin(ax + dy) + eay cos(az + dx)) e−νd2t

p = −a2

2
(e2ax + e2ay + e2az + 2 sin(ax + dy) cos(az + dx)ea(y+z)

+2 sin(ay + dz) cos(ax + dy)ea(z+x)

+2 sin(az + dx) cos(ay + dz)ea(x+y))e−2νd2t .

In our experiments we set t = 0.1, a = π/4, d = π/2 and vary ν



Numerical experiment: Ethier-Steinman vortex
analog of Taylor vortex problem

Table : The performance of the ILU(τ = 0.02),ILU(τ1 = 0.02, τ2 = 7τ2
1 )

preconditioners for the Ethier–Steinman flow, d.o.f.∼ 520 000

ν: 1 10−2 10−3

α: 1 10 100 1 10 100 1 10 100
fillLU

ILU(τ ) 1.22 1.22 1.17 1.48 1.27 0.97 n/c 6.53 1.89
ILU(τ1, τ2) 1.20 1.20 1.16 1.53 1.30 0.96 9.28 5.33 1.80

#it(BCGstab)
ILU(τ ) 337 296 50 27 22 31 n/c 83 44

ILU(τ1, τ2) 201 158 36 22 24 26 47 38 31
TCPU(BCGstab)

ILU(τ ) 170.1 149.7 31.0 20.8 16.7 16.8 n/c 234.1 38.4
ILU(τ1, τ2) 93.8 96.9 35.7 51.2 42.8 35.1 2174 735 89.5

for GMRES(30) the results are similar
The two-parameter ILU factorization leads to more efficient preconditioner in

terms of memory usage (fill-in) and iteration counts, compared to the standard

ILU(τ ).



Numerical experiment: Flow in right coronary artery

A real patient CT angiography, tetrahedral mesh (120 000 tets),
FE systems with 620 000 d.o.f. generated by ani3D package

thanks to Alexander Danilov, Tatiana Dobroserdova



Numerical experiment: Flow in right coronary artery

ν = 0.04 cm2/s, ρ = 1 g/cm, one cardiac cycle period 0.735 s, inlet velocity
waveform from clinical measurements, Dirichlet b.c. with Poiseuille profile (inlet),
Neumann b.c. (outlet)

∆t = 0.005, τ1 = 0.03, τ2 = 7τ2
1

I fill-in rate for the LU-factors repeats the waveform of the inflow velocity
I due to such adaptivity, the variations of the iteration numbers and

computational times per linear solve are rather modest



SUPG-stabilized FEM
Weak formulation:

L(u,p; v,q) = (f,v)∗ + (g,q) ∀ v ∈ V, q ∈ L2(Ω) ,

L(u,p; v,q) := α(u,v) + ν(∇u,∇v) + ((w · ∇) u,v)− (p, div v) + (q, div u)

Given conforming FE spaces Vh ⊂ V and Qh ⊂ L2(Ω), the
SUPG-FE discretization is:

Find {uh,ph} ∈ Vh ×Qh such that

L(uh,ph; vh,qh)+
∑
τ∈Th

στ (αuh−ν∆uh+w·∇uh+∇ph−f,w·∇vh)τ =

= (f,vh)∗ + (g,qh) ∀vh ∈ Vh, qh ∈ Qh

(
A B̃T

B −C

)(
u
p

)
=

(
f
g

)



SUPG parameter στ
I Mesh Reynolds number Reτ := ‖w‖L∞(τ)hw/ν

στ =

{
σ̄ hw

2‖w‖L∞(τ)

(
1− 1

Reτ

)
, if Reτ > 1,

0, if Reτ ≤ 1,
with 0 ≤ σ̄ < 1.

I S̃ := BA−1B̃T + C > 0 and the stability of its LU factorization
is guaranteed if the perturbation E = B̃ − B is not too large:

κ := (1 + CA)εEc−
1
2

S < 1,

where εE := ‖A−
1
2

S ET‖, cS := 1
2λmin(S + ST ).

I κ < 1 is provided by additional restrictions

στ ≤
h2
τ

2νC̄2
in

(
1 +

αh2
τ

νC2
in

)
and στ ≤

hτ
4‖w‖L∞(τ)Cin

∀ τ ∈ Th

I.Konshin, M.Olshanskii, and Yu.Vassilevski. LU factorizations and ILU
preconditioning for stabilized discretizations of incompressible Navier–Stokes
equations. Submitted to Num.Lin.Alg.Appl.



Numerical experiment: Flow in right coronary artery,
different viscosities

Table : The performance of ILU(τ1, τ2 = 7τ2
1 ). The table shows values

of τ1 which allow to run the simulation for the complete cardiac cycle
for different parameters σ̄. ‘?’ means finite element solution blow-up,
‘–’ means intractable systems for any possible τ1.

ν, \ σ̄ 0 1/96 1/48 1/24 1/12 1/6 1/3
cm2/s
0.040 0.03 0.03 0.03 0.03 0.03 0.03 0.003
0.025 ? 0.03 0.03 0.03 0.03 0.003 –



Conclusions
I We proved numerical stability bounds for the exact LU

factorization of non-symmetric saddle-point matrices

I We estimated the dependence of the constants in these
bounds on the flow problem and SUPG-stabilization
parameters

I For considered problems, natural u-p ordering of unknowns
and matrix two-side scaling is sufficient for numerically
stable factorizations

I Two-parameter threshold ILU(τ1, τ2) likely covers most
laminar flows

I Quasi-optimal τ -s can be chosen and successfully used for
a wide range of flow, discretization and stabilization
parameters

I The two-parameter ILU preconditioner was applied
successfully in simulation of a blood flow in a right
coronary artery reconstructed from a real patient coronary
CT angiography


