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Introduction Collapsible tubes

Starling resistor

M. Heil, O. E. Jensen (2003). Flows in deformable tubes and channels:
Theoretical models and biological applications. In: P. W. Carpenter,
T. J. Pedley (eds.). Flow Past Highly Compliant Boundaries and in
Collapsible Tubes.
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Introduction Collapsible tubes

One-dimensional model

Averaging over cross-section:
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𝜕t
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𝜕x
= 0,
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+ u

𝜕u

𝜕x
= −1

𝜌

𝜕p

𝜕x
− Ru,

where A is the cross-sectional area, u is the mean velocity, p is the
transmural pressure (p − pext).

The “equation-of-state” (“tube law”):

p = p(t, x ,A(t, x)).

Alexander Khe (Novosibirsk, Russia) Fluid flow in collapsible tubes INM RAS, Moscow 2016 3 / 16



Introduction Collapsible tubes

Tube law
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Introduction Collapsible tubes

Self-excited oscillations

(a) Attached flow; no pressure loss.
Choking.

(b) Ideal separation; no pressure
recovery. Steady flow.

(c) An intermediate case: partial
pressure recovery.
Self-excite oscillations.
[Cancelli, Pedley, 1985]
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Mathematical model Multi-layer models

Multi-layer models

Water waves: mixing layer, near-surface turbulent layer, turbulent bore.

Gas dynamics: pseudo-shocks.

[Liapidevskii, Chesnokov, et al.]
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Mathematical model Two-layer flow in tube

Axisymmetric flow

Axisymmetric flow:

ut + uux + vur + 𝜌−1px = 0,

vt + uvx + vvr + 𝜌−1pr = 0,
(ru)x + (rv)r = 0.

(1)

(r , 𝜙)

x

h(t, x)
u(t, x , r)
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Mathematical model Two-layer flow in tube

Long-wave approximation

Long-wave approximation (𝜀2 ≡ R2
0/L

2
0 ≪ 1):

ut + uux + vur + 𝜌−1px = 0,
pr = 0,

(ru)x + (rv)r = 0.

(2)

Pressure:
p = p(t, x).

Vorticity (up to 𝒪(𝜀2)):
𝜔 = −ur .
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Mathematical model Two-layer flow in tube

Two-layer flow

r ∈ (0, h): potential core (𝜔 = −ur = 0).
r ∈ (h, 𝜂): turbulent boundary layer.
Areas:

s(t, x) = 𝜋h2(t, x), s̄(t, x) = 𝜋
(︀
𝜂2(t, x) − h2(t, x)

)︀
.

Average velocity in the boundary layer and root-mean-square deviation

ū(t, x) =
2𝜋
s̄

∫︁ 𝜂

h
u(t, x , r) r dr , q2(t, x) =

2𝜋
𝜎

∫︁ 𝜂

h
(u − ū)2 r dr .

r

x

r = 𝜂(t, x)

r = h(t, x)

(ur = 0)

u(t, x , r)
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Mathematical model Two-layer flow in tube

Governing equations

st + (su)x = −𝜎q,

s̄t + (s̄ ū)x = 𝜎q,

ut + uux + 𝜌−1px = 0,

(su + s̄ ū)t +
(︀
su2 + s̄(ū2 + q2)

)︀
x

+ 𝜌−1(s + s̄)px = 0,(︁su2 + s̄(ū2 + q2)

2

)︁
t

+
(︁su3 + s̄ ū(ū2 + 3q2)

2

)︁
x

+

+ 𝜌−1(su + s̄ ū)px = −𝜎𝜅q3.

(3)

Parameters 𝜎, 𝜅 characterize mixing and energy dissipation.
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Mathematical model Two-layer flow in tube

Tube law

Suppose that the tube law has the following form:

p = K (x)p̄(S/S0).

K (x) characterizes the stiffness of the tube, S = s + s̄, S0 corresponds to
zero transmural pressure.

In the following: p̄(𝜉) = 𝜉10 − 𝜉−3/2. 0.2 0.4 0.6 0.8 1.0 1.2
ξ
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Mathematical model Two-layer flow in tube

Characteristics

Non-conservative form:

st + usx + sux = −𝜎q,

s̄t + ūs̄x + s̄ ūx = 𝜎q,

ut + uux + 𝜌−1px = 0,

ūt + ūūx + 2qqx + s̄−1q2s̄x + 𝜌−1px = 0,
qt + qūx + ūqx = Q,

where px = Kp̄′(S)(sx + s̄x).

It can be shown that there exist at least three real characteristic velocities.
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Numerical experiments Results

Numerical experiments

L = 30, 𝜎 = 0.15, 𝜅 = 6, N = 500.

K = 1 + 3/(1 + 𝛼(x − 0.9L)8)2.

Case 1:
S = 1.2, u0 = 25.

Case 2:
S = 0.8, u0 = 4.

The system was solved with Godunov’s scheme.
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Numerical experiments Results

Pseudo-shock

S = 1.2, u0 = 25

Smooth pseudo-shock.
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Numerical experiments Results

Oscillatory regime

S = 0.8, u0 = 4

Quasi-periodic waves of large amplitude.
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Conclusion Summary

Summary

The mathematical model proposed can describe stationary and
non-stationary (self-excited oscillations) regimes.
The model is based on a two-layer flow formulation which is used for
description of the pseudo-shocks or smooth transition from supercritical to
subcritical flows.
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