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Plan de la présentation

1 INTRODUCTION to non-Markovian models of intracellular transport

2 FRACTIONAL PDE’s

Subdiffusive Fokker-Planck equation with space dependent anomalous
exponent
Superdiffusive transport (Lévy walk) in two-state systems
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Non-Markovian transport: subdiffusion and superdiffusion

Spatial dispersal of Brownian particles: EB2(t) = 2Dt
Subdiffusion:

EX 2(t) ∼ tµ 0 < µ < 1

• Transport of proteins and lipids on cell membranes (Saxton, Kusumi)
• Transport of signaling molecules in a neuron with spiny dendrites
(Santamaria)
Macroscopic equation for the concentration ρ involves the memory

∂ρ

∂t
= Dµ

∂2

∂x2

(

D
1−µ

t ρ
)

, (1)

where the Riemann-Liouville (fractional) derivative D
1−µ

t is defined as

D
1−µ

t ρ =
1

Γ(µ)

∂

∂t

∫

t

0

ρ (x , u) du

(t − u)1−µ
(2)
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Anomalous subdiffusion: < X
2(t) >∼ t

µ 0 < µ < 1

• Subdiffusion is due to trapping inside dendritic spines

.

Non-Markovian behavior of particles performing random walk occurs when
particles are trapped during the random time with non-exponential
distribution.
Power law waiting time distribution

φ (t) ∼
1

t1+µ

with 0 < µ < 1 as t → ∞.
The mean waiting time is infinite.
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Transport in a Two-State System, Lévy walk

• Switching between passive subdiffusion and active intracellular transport

Experiment by Viki Allan: Endosome (red) movement along microtubules
(green) visualized in a living HeLa cell (panel A).

Superdiffusion: EX 2(t) ∼ t3−µ 1 < µ < 2
where X (t) is the endosome position, E is the expectation (mean value).
• Virus trafficking (Holcman): slow diffusion and ballistic movement along
microtubules.
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Superdiffusion: Lévy flight and Lévy walk

Lévy flight and Lévy walk are generalized random walk in which the step
lengths during the walk are described by a ”heavy-tailed” probability
distribution: animal foraging patterns, the distribution of human travel,
etc.

• Fractional equation for Lévy flights

∂ρ

∂t
= −Dα (−∆)

α

2 ρ, x ∈ R
2

Animals take lots of short steps in a localized area before making long
jumps to new areas: the Lévy pattern for tuna, cod, turtles and penguins.
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Subdiffusive Fractional Fokker-Planck (FFP) Equation

Let p(x , t) be the PDF for finding the particle in the interval (x , x + dx)
at time t, then

∂p

∂t
= −

∂
(

vµ(x)D
1−µ

t p

)

∂x
+
∂2

(

Dµ(x)D
1−µ

t p

)

∂x2
(3)

with the fractional diffusion Dµ(x) and drift vµ(x); µ < 1.

The Riemann-Liouville derivative D
1−µ

t is defined as

D
1−µ

t p (x , t) =
1

Γ(µ)

∂

∂t

∫

t

0

p (x , u) du

(t − u)1−µ
(4)

The difference between standard Fokker-Planck equation and FFP
equation is the rate of relaxation of

p (x , t) → pst(x)

.
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Gibbs-Boltzmann distribution

In the anomalous subdiffusive case the relaxation process is very slow and
it is described by a Mittag-Leffler function with the power-law decay t−µ

as t → ∞ (R. Metzler and J. Klafter, 2000) .
The fractional FP equation admits the stationary solution in the form of
the Gibbs-Boltzmann distribution

When the anomalous exponent µ depends on the space variable x , the
Gibbs-Boltzmann distribution is not a long time limit of the fractional
Fokker-Planck equation.
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Fractional Fokker-Planck (FFP) equation

Subdiffusive fractional equations with constant µ in a bounded domain
[0, L] are not structurally stable with respect to the non-homogeneous
variations of parameter µ.

µ(x) = µ+ δν(x) (5)

0 Lx

µ
µ(x)

δν(x)

The space variations of the anomalous exponent lead to a drastic change
in asymptotic behavior of p(x , t) for large t.
S. Fedotov and S. Falconer, Phys. Rev. E, 85, 031132, 2012
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Monte Carlo simulations
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Figure : Long time limit of the solution to the system with µi = 0.5 for all i .
Gibbs-Boltzmann distribution is represented by the line.
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Figure : The parameters are µi = 0.5 for all i except i = 42 for which µ42 = 0.3.
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Lévy motility of vesicles

The main challenge is to develop the quantitative analysis of
non-Markovian Lévy motility of vesicles along the microtubules.

We introduce a non-Markovian switching mechanism for the particle’s
velocity which leads to Lévy motility of particles. Power-law running time
distribution is dynamically generated by internal switching involving the
age dependent switching rate.
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Stochastic model for superdiffusion

We consider the vesicles moving with two velocities v and −v alternating
randomly in time.
We define the densities n±(x , t, τ) for the vesicles at point x and time t

moving in the right (+) and the left (−) direction during time τ since the
last switching. The balance equations are

∂n±
∂t

± v
∂n±
∂x

+
∂n±
∂τ

= −γ(τ)n± (6)

for τ < t with the boundary conditions at τ = 0

n±(x , t, 0) =

∫

t

0
γ(τ)n∓(x , t, τ)dτ, (7)
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Stochastic model for superdiffusion

The balance equations for the unstructured density

ρ±(x , t) =

∫

t

0
n±(x , t, τ)dτ

can be written as

∂ρ+
∂t

+ v
∂ρ+
∂x

= −i+(x , t) + i−(x , t), (8)

∂ρ−
∂t

− v
∂ρ−
∂x

= i+(x , t)− i−(x , t), (9)

where

i±(x , t) =

∫

t

0
K (t − τ)ρ±(x ∓ v(t − τ), τ)dτ, (10)

where K (t) is the memory kernel.
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Single integro-differential wave equation for Lévy walk

We solved a long-standing problem of a derivation of the single
integro-differential wave equation for the probability density function of
the position of a classical one-dimensional Lévy walk:

∂2p

∂t2
− v2

∂2p

∂x2
+

∫

t

0

∫

V

K (τ)ϕ(u)

(

∂

∂t
− u

∂

∂x

)

×

p (x − uτ, t − τ) dudτ = 0, (11)

where v is a constant speed of walker, ϕ(u) is the velocity jump density:

ϕ(u) =
1

2
δ (u − v) +

1

2
δ (u + v) (12)

in the velocity space V . The standard memory kernel K (τ) is determined
by its Laplace transform K̂ (s) = ψ̂(s)/Ψ̂(s), where ψ̂(s) and Ψ̂(s) are the
Laplace transforms of the running time density ψ(τ) and the survival
function Ψ(τ).
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