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Plan de la présentation

© INTRODUCTION to non-Markovian models of intracellular transport

© FRACTIONAL PDE's

@ Subdiffusive Fokker-Planck equation with space dependent anomalous
exponent
@ Superdiffusive transport (Lévy walk) in two-state systems
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Non-Markovian transport: subdiffusion and superdiffusion

Spatial dispersal of Brownian particles: ~EB?(t) = 2Dt
Subdiffusion:

EX3(t)~th  O0<pu<l1

e Transport of proteins and lipids on cell membranes (Saxton, Kusumi)

e Transport of signaling molecules in a neuron with spiny dendrites
(Santamaria)

Macroscopic equation for the concentration p involves the memory

ap 82 1—p
7t = Dupa (Dt ’P) 7 (1)

where the Riemann-Liouville (fractional) derivative D; " is defined as
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Anomalous subdiffusion: < X?(t) >~ t* 0<pu<1

e Subdiffusion is due to trapping inside dendritic spines

 — dendritic spines
o P

synapse

Non-Markovian behavior of particles performing random walk occurs when
particles are trapped during the random time with non-exponential

distribution.
Power law waiting time distribution

1
o(t) ~

with 0 < p <1ast— oo.

The mean waiting time is infinite.
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Transport in a Two-State System, Lévy walk

e Switching between passive subdiffusion and active intracellular transport

Experiment by Viki Allan: Endosome (red) movement along microtubules
(green) visualized in a living Hela ceII (panel A).

Superdiffusion:  EX?(t) ~ t37# l<p<?2
where X(t) is the endosome position, E is the expectation (mean value).
e Virus trafficking (Holcman): slow diffusion and ballistic movement along

microtubules.
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Superdiffusion: Lévy flight and Lévy walk

Lévy flight and Lévy walk are generalized random walk in which the step
lengths during the walk are described by a "heavy-tailed” probability
distribution: animal foraging patterns, the distribution of human travel,

etc.

e Fractional equation for Lévy flights
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Animals take lots of short steps in a localized area before making long

jumps to new areas: the Lévy pattern for tuna, cod, turtles and penguins.
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Subdiffusive Fractional Fokker-Planck (FFP) Equation

Let p(x, t) be the PDF for finding the particle in the interval (x,x + dx)
at time t, then

op 0 (wlaDi "p) K (Dut)Dt "p) o
ot Ox Ox?
with the fractional diffusion D, (x) and drift v,(x); © < 1.

The Riemann-Liouville derivative Dtl*“ is defined as

1-p 1 9 [tp(x,u)du
PO = gt o T “

The difference between standard Fokker-Planck equation and FFP
equation is the rate of relaxation of

p(x,t) = pst(x)
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Gibbs-Boltzmann distribution

In the anomalous subdiffusive case the relaxation process is very slow and
it is described by a Mittag-Leffler function with the power-law decay t=#
as t — oo (R. Metzler and J. Klafter, 2000) .

The fractional FP equation admits the stationary solution in the form of
the Gibbs-Boltzmann distribution

When the anomalous exponent ;1 depends on the space variable x, the
Gibbs-Boltzmann distribution is not a long time limit of the fractional

Fokker-Planck equation.
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Fractional Fokker-Planck (FFP) equation

Subdiffusive fractional equations with constant x in a bounded domain

[0, L] are not structurally stable with respect to the non-homogeneous
variations of parameter p.

(x) = p+ 6v(x)

H(x)
u
SV(x)
0 X

The space variations of the anomalous exponent lead to a drastic change
in asymptotic behavior of p(x, t) for large t.

S. Fedotov and S. Falconer, Phys. Rev. E, 85, 031132, 2012
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Monte Carlo simulations

p,(T)
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Figure : Long time limit of the solution to the system with p; = 0.5 for all /.
Gibbs-Boltzmann distribution is represented by the line.
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Figure : The parameters are pu; = 0.5 for all i except i = 42 for which p4o = 0.3.
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Lévy motility of vesicles

The main challenge is to develop the quantitative analysis of
non-Markovian Lévy motility of vesicles along the microtubules.

We introduce a non-Markovian switching mechanism for the particle’s
velocity which leads to Lévy motility of particles. Power-law running time

distribution is dynamically generated by internal switching involving the
age dependent switching rate.
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Stochastic model for superdiffusion

We consider the vesicles moving with two velocities v and —v alternating
randomly in time.
We define the densities ny(x, t, ) for the vesicles at point x and time t

moving in the right (+) and the left (—) direction during time 7 since the
last switching. The balance equations are

Gni (9ni (9ni o
ot TV ox T = = (6)

for 7 < t with the boundary conditions at 7 =0

ne(x,t,0) :/0 y(T)nx(x, t, 7)dT, (7)
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Stochastic model for superdiffusion

The balance equations for the unstructured density
t

p+(x,t) :/ ne(x,t,7)dr
0

can be written as

Op+ O+ _ -
B +v o ir(x,t) +i-(x,t), (8)
Op— op— . .
B Var = ir(x,t) —i_(x,t), 9)
where .
i (x,t) :/ K(t — 1)ps(x F vt — 7),7)dr, (10)
0

where K(t) is the memory kernel.
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Single integro-differential wave equation for Lévy walk

We solved a long-standing problem of a derivation of the single
integro-differential wave equation for the probability density function of
the position of a classical one-dimensional Lévy walk:

0%p 28p 0
o2~V // () el <at 8X>X

p(x —ur,t —7)dudr =0, (11)

where v is a constant speed of walker, ¢(u) is the velocity jump density:

(1) = %5(u—v)+%5(u+v) (12)

in the velocity space V. The standard memory kernel K(7) is determined
by its Laplace transform K(s) = ¢)(s)/W(s), where ¢)(s) and W(s) are the
Laplace transforms of the running time density ¢ (7) and the survival
function V(7).
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