Non-Markovian Models of Intracellular Transport

SERGEI FEDOTOV

School of Mathematics The University of Manchester, UK

EPSRC grant EP/N018060/1: Non-Markovian models of intracellular transport in a heterogeneous environment, 2016-2019

VIII-th conference

INTRODUCTION to non-Markovian models of intracellular transport

FRACTIONAL PDE's

- Subdiffusive Fokker-Planck equation with space dependent anomalous exponent
- Superdiffusive transport (Lévy walk) in two-state systems

Non-Markovian transport: subdiffusion and superdiffusion

Spatial dispersal of Brownian particles: $\mathbb{E}B^2(t) = 2Dt$ Subdiffusion:

$$\mathbb{E} X^2(t) \sim t^\mu \qquad 0 < \mu < 1$$

Transport of proteins and lipids on cell membranes (Saxton, Kusumi)
Transport of signaling molecules in a neuron with spiny dendrites (Santamaria)

Macroscopic equation for the concentration ρ involves the memory

$$\frac{\partial \rho}{\partial t} = D_{\mu} \frac{\partial^2}{\partial x^2} \left(\mathcal{D}_t^{1-\mu} \rho \right), \qquad (1)$$

where the Riemann-Liouville (fractional) derivative $\mathcal{D}_t^{1-\mu}$ is defined as

$$\mathcal{D}_{t}^{1-\mu}\rho = \frac{1}{\Gamma(\mu)}\frac{\partial}{\partial t}\int_{0}^{t}\frac{\rho(x,u)\,du}{(t-u)^{1-\mu}}\tag{2}$$

Anomalous subdiffusion: $< X^2(t) > \sim t^{\mu}$ $0 < \mu < 1$

• Subdiffusion is due to trapping inside dendritic spines

Non-Markovian behavior of particles performing random walk occurs when particles are trapped during the random time with non-exponential distribution.

Power law waiting time distribution

$$\phi\left(t
ight)\simrac{1}{t^{1+\mu}}$$

with $0 < \mu < 1$ as $t \to \infty$. The mean waiting time is infinite.

Transport in a Two-State System, Lévy walk

• Switching between passive subdiffusion and active intracellular transport

Experiment by Viki Allan: Endosome (red) movement along microtubules (green) visualized in a living HeLa cell (panel A).

Superdiffusion: $\mathbb{E}X^2(t) \sim t^{3-\mu}$ $1 < \mu < 2$

where X(t) is the endosome position, \mathbb{E} is the expectation (mean value).

• Virus trafficking (Holcman): slow diffusion and ballistic movement along microtubules.

Superdiffusion: Lévy flight and Lévy walk

Lévy flight and Lévy walk are generalized random walk in which the step lengths during the walk are described by a "heavy-tailed" probability distribution: animal foraging patterns, the distribution of human travel, etc.

• Fractional equation for Lévy flights

$$rac{\partial
ho}{\partial t} = - D_lpha \left(-\Delta
ight)^{rac{lpha}{2}}
ho, \qquad x \in \mathbb{R}^2$$

Animals take lots of short steps in a localized area before making long jumps to new areas: the Lévy pattern for tuna, cod, turtles and penguins.

Subdiffusive Fractional Fokker-Planck (FFP) Equation

Let p(x, t) be the PDF for finding the particle in the interval (x, x + dx) at time t, then

$$\frac{\partial p}{\partial t} = -\frac{\partial \left(v_{\mu}(x) \mathcal{D}_{t}^{1-\mu} p \right)}{\partial x} + \frac{\partial^{2} \left(\mathcal{D}_{\mu}(x) \mathcal{D}_{t}^{1-\mu} p \right)}{\partial x^{2}}$$

with the fractional diffusion $D_{\mu}(x)$ and drift $v_{\mu}(x)$; $\mu < 1$.

The Riemann-Liouville derivative $\mathcal{D}_t^{1-\mu}$ is defined as

$$\mathcal{D}_{t}^{1-\mu}\rho(x,t) = \frac{1}{\Gamma(\mu)}\frac{\partial}{\partial t}\int_{0}^{t}\frac{p(x,u)\,du}{(t-u)^{1-\mu}} \tag{4}$$

The difference between standard Fokker-Planck equation and FFP equation is the rate of relaxation of

$$p(x,t) \rightarrow p_{st}(x)$$

(3)

Gibbs-Boltzmann distribution

In the anomalous subdiffusive case the relaxation process is very slow and it is described by a Mittag-Leffler function with the power-law decay $t^{-\mu}$ as $t \to \infty$ (R. Metzler and J. Klafter, 2000) . The fractional FP equation admits the stationary solution in the form of

the Gibbs-Boltzmann distribution

When the anomalous exponent μ depends on the space variable x, the Gibbs-Boltzmann distribution is not a long time limit of the fractional Fokker-Planck equation.

Fractional Fokker-Planck (FFP) equation

Subdiffusive fractional equations with constant μ in a bounded domain [0, L] are not structurally stable with respect to the non-homogeneous variations of parameter μ .

$$\mu(\mathbf{x}) = \mu + \delta \nu(\mathbf{x}) \tag{5}$$

The space variations of the anomalous exponent lead to a drastic change in asymptotic behavior of p(x, t) for large t. S. Fedotov and S. Falconer, Phys. Rev. E, 85, 031132, 2012

Monte Carlo simulations

Figure : Long time limit of the solution to the system with $\mu_i = 0.5$ for all *i*. Gibbs-Boltzmann distribution is represented by the line.

Figure : The parameters are $\mu_i = 0.5$ for all *i* except i = 42 for which $\mu_{42} = 0.3$.

Russia	INM RAS, Gubkin str., 8	Moscow 2016 10 / 1	LE
--------	-------------------------	--------------------	----

Lévy motility of vesicles

The main challenge is to develop the quantitative analysis of non-Markovian Lévy motility of vesicles along the microtubules.

We introduce a non-Markovian switching mechanism for the particle's velocity which leads to Lévy motility of particles. Power-law running time distribution is dynamically generated by internal switching involving the age dependent switching rate.

We consider the vesicles moving with two velocities v and -v alternating randomly in time.

We define the densities $n_{\pm}(x, t, \tau)$ for the vesicles at point x and time t moving in the right (+) and the left (-) direction during time τ since the last switching. The balance equations are

$$\frac{\partial n_{\pm}}{\partial t} \pm v \frac{\partial n_{\pm}}{\partial x} + \frac{\partial n_{\pm}}{\partial \tau} = -\gamma(\tau)n_{\pm}$$
(6)

for $\tau < t$ with the boundary conditions at $\tau = 0$

$$n_{\pm}(x,t,0) = \int_0^t \gamma(\tau) n_{\mp}(x,t,\tau) d\tau, \qquad (7)$$

Stochastic model for superdiffusion

The balance equations for the unstructured density

$$\rho_{\pm}(x,t) = \int_0^t n_{\pm}(x,t,\tau) d\tau$$

can be written as

$$\frac{\partial \rho_{+}}{\partial t} + v \frac{\partial \rho_{+}}{\partial x} = -i_{+}(x, t) + i_{-}(x, t), \qquad (8)$$

$$\frac{\partial \rho_{-}}{\partial t} - v \frac{\partial \rho_{-}}{\partial x} = i_{+}(x, t) - i_{-}(x, t), \qquad (9)$$

where

$$i_{\pm}(x,t) = \int_0^t \mathcal{K}(t-\tau)\rho_{\pm}(x \mp v(t-\tau),\tau)d\tau, \qquad (10)$$

where K(t) is the memory kernel.

Single integro-differential wave equation for Lévy walk

We solved a long-standing problem of a derivation of the single integro-differential wave equation for the probability density function of the position of a classical one-dimensional Lévy walk:

$$\frac{\partial^2 p}{\partial t^2} - v^2 \frac{\partial^2 p}{\partial x^2} + \int_0^t \int_V K(\tau) \varphi(u) \left(\frac{\partial}{\partial t} - u \frac{\partial}{\partial x}\right) \times p(x - u\tau, t - \tau) \, du d\tau = 0,$$
(11)

where v is a constant speed of walker, $\varphi(u)$ is the velocity jump density:

$$\varphi(u) = \frac{1}{2}\delta(u-v) + \frac{1}{2}\delta(u+v)$$
(12)

in the velocity space V. The standard memory kernel $K(\tau)$ is determined by its Laplace transform $\hat{K}(s) = \hat{\psi}(s)/\hat{\Psi}(s)$, where $\hat{\psi}(s)$ and $\hat{\Psi}(s)$ are the Laplace transforms of the running time density $\psi(\tau)$ and the survival function $\Psi(\tau)$.

Single integro-differential wave equation for Lévy walk

We solved a long-standing problem of a derivation of the single integro-differential wave equation for the probability density function of the position of a classical one-dimensional Lévy walk:

$$\frac{\partial^2 p}{\partial t^2} - v^2 \frac{\partial^2 p}{\partial x^2} + \int_0^t \int_V K(\tau) \varphi(u) \left(\frac{\partial}{\partial t} - u \frac{\partial}{\partial x}\right) \times p(x - u\tau, t - \tau) \, du d\tau = 0,$$
(13)

where v is a constant speed of walker, $\varphi(u)$ is the velocity jump density:

$$\varphi(u) = \frac{1}{2}\delta(u-v) + \frac{1}{2}\delta(u+v)$$
(14)

in the velocity space V. The standard memory kernel $K(\tau)$ is determined by its Laplace transform $\hat{K}(s) = \hat{\psi}(s)/\hat{\Psi}(s)$, where $\hat{\psi}(s)$ and $\hat{\Psi}(s)$ are the Laplace transforms of the running time density $\psi(\tau)$ and the survival function $\Psi(\tau)$.