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Mathematical side of the story:

" The variabies of the dyn-amicaf system are the concentrations
of individual polynucleotide sequences: [[;] = ¢,(t). We are
interested, essentially, in the relative concentrations of the different
species

x = c,(r)/_}n:},c,{a‘); i=1,2..,n (12)

The resulting kinetic equations, around which quasi-species theory
centers, are then

dx(n) /dt = 20) = (W = EO)xdr) + T Waxi(1);
k=12 .,n(13)

The mean excess production
E@) = EX;(!)E.- (14)

of the population may be physically compensated by a dilution

Ref: M. Eigen, J. McCaskill, P. Schuster, J Phys Chem, 92(24), 1988: 6881-6891
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Model statement:

Consider a very large (infinite) population of haploid individuals (sequences)

with fixed genome length N composed of two-letter alphabet, say, {0, 1},

therefore 2V different sequences. For example, if N = 4 then it is possible to

have 24 different sequences:

[0000],
(0100],
[1000],
[1100],

[0001], [0010], [0011],
[0101], [0110], [0111],
[1001], [1010], [1011],
[1101], [1110], [1111].

)

Different sequences have different fitnesses (selection) and it is possible that 0
at any site mutates into 1 and vice versa (mutations).
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Eigen’s quasispecies model:

The quasispecies model takes into account two evolutionary forces: selection
and mutations. The selection can be described by the diagonal matrix of
fitnesses

W = diag(wy, ..., w;),
and mutations are described by the double stochastic matrix
Q = [gijlixt,

where ¢;; is the probability that macromolecule j produces macromolecule 7,
which can be further defined as

gij = ¢~ "% (1 —q)%,
where ¢ is the fidelity of replication per site (i.e., 1 — ¢ is the probability of

mutation per site), and d;; is the Hamming distance between sequences ¢
and j.
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Eigen’s quasispecies model:

Let n;(t) be the number of sequences of type j at time ¢. Then, using the
notations from the previous slide,

nj quﬁwmi, j=1,...,2N.

Switching from the absolute sizes to the frequencies, p;(t) = Zn it 2 Ok leads to

Zq]lwzpz_ )p]a j:l,._.’QN,

or, in the matrix form,
p=QWp—w(t)p.

Here w(t) is the mean population fitness,

l
=2 wips(t) = w-p(t).
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Eigen’s quasispecies model:

The only equilibrium point of the Eigen’s quasispecies model satisfies the
equation

QWp = wp,

which is the eigenvalue problem for matrix QW. It it quite straightforward to
show that, according to the Perron—Frobenius theorem, there is always a
solution to this problem, where w is the leading (dominant) real positive
eigenvalue and p > 0 is a corresponding eigenvector. Moreover, this
equilibrium point is globally asymptotically stable.

This vector p was called the quasispecies by Eigen.
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Crow—Kimura quasispecies model:

In the following we consider a modification of the original Eigen’s model. This
modification takes into account two things:

» First, we assume that all the sequences with the same number of 1s have
exactly the same fitness. This means that we do not distinguish, e.g.,
between sequences [0010] and [0100] and thus have to deal with N + 1
classes of sequences instead of 2V types of macromolecules.

» Second, instead of taking into account probabilities, as was done originally
by Eigen, we will concentrate, as it is more natural in the continuous time
settings, on the rates ji;;.

The evolutionary force of selection is included through the fitness landscape,
which in our case is given by a diagonal matrix

M = diag(mo,...,mn),

where m; is the fitness of the j-th class of sequences.
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Model statement:

The second evolutionary force is mutation.

In particular, assuming N + 1 classes of sequences, we have that the mutations
wij (i-e., the mutation rate from class j to class i) can be described by the

matrix

M = (pij) = pQ = p

[-N
N
0
0

0

0

1
-N
N -1

0
0

0
0
0
0 )
-N N
1 —N]|

where p is the mutation rate per site per sequence per replication event.
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Model statement:

Let p(t) denote the vector of frequencies of different classes of sequences, then,
assuming uncoupled reproduction and mutation events, we arrive at

p(t) = (M +puQ)p(t) —m(t)p(t),
where

N
m(t) =m-p(t) =Y mipi(t)
=0

is the mean population fitness.

This model is often called a paramuse of Crow—Kimura quasispecies model
with permutation invariant fitness landscape.

Ref: Baake and Gabriel, Annual Reviews of Computational Physics VII, 1999: 203-264

Ref: Crow and Kimura, An introduction to population genetics theory, 1970
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Elementary results:

The asymptotic behavior of the quasispecies model is determined by the
equilibrium p = lim;_, o, p(t), which solves the eigenvalue problem

(M +pQ)p =mp,

where
N

m:m~p:2m¢pi.
i=0
By Perron—Frobenius theorem it follows that there is a unique positive
solution p > 0, which is the right eigenvector of M + u@Q corresponding to the
simple real dominant eigenvalue A = m.

This vector p was called by Eigen the quasispecies. It is globally stable for the
quasispecies system. We are mostly interested in properties of m and p
depending on the fitness landscape M and mutation rate u, therefore, we use
the notation m = m(p) and p = p(p) for the mean fitness and equilibrium
distribution.
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Known results: The error threshold

1.0
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Fig. 4.5 The error threshold (Swetina & Schuster, 1982). d is the number of differences
between a particular sequence and the ‘master’ sequence that has the highest fitness. Thus
the curve for d = 3 is the proportion of sequences differing from the master by exactly three
mutations. In this simulation, the sequence was of 50 sites, each occupied by one of two
kinds of base. The fitnesses of all sequences other than the master were equal. Beyond the
threshold, all sequences were equally frequent. Since the numbers of sequences with d =
23 and d = 27, for example, are the same, the frequencies of the two classes were also
equal, as shown here.
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Known results: The error threshold

We are interested in the coexistence of master and mutants. The alternative is
that only mutants are present at equilibrium: selection is not able to maintain
the master sequence against mutational decay. We therefore set both rates of
change to zero, and ask whether an equilibrium with non-zero x,, can exist. It
turns out that such an equilibrium requires

0> AyfAnm=1/s, (4.4)
where s is the selective superiority of the master. We know, however, that

Q=gY¥meNO-0, (4.5)
Combining the last two equations we have

N <In s/(1-q), (4.6)

which means that the selectively maintainable amount of information (N) is
limited by the copying fidelity per digit (q) (Eigen, 1971).
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Opinion

Known results: The error threshold

Open Access

The fundamental units, processes and patterns of evolution, and the

Tree of Life conundrum

Eugene V Koonin* and Yuri I Wolf

It is almost as intuitively clear that, although for evolution
to occur, replication must be error-prone (and, replication
is, in any case, erTor-prone owing to physical constraints),
there must also exist an error threshold such that an
above-threshold error rate renders evolution impossible.
Extrapolating to the extreme (absurd), it is obvious that a
“replication” process that incorporates nucleotides ran-
domly is not conducive to evolution (and, of course, does
not really qualify as replication). Spiegelman's experi-
ments stimulated theoretical work by Figen and cowork-
ers that put the link between replication and evolution
into a mathematical framework and quantified the
requirements to the replication error rate [30]. Eigen's
seminal work and subsequent, increasingly sophisticated
analysis showed that the error threshold, that is, the min-
imal fidelity that is required for mutations to be fixed and,
accordingly, for evolution to proceed, is relatively low, in
the range of 1-10 errors per replication cycle (the exact
number remains a matter of debate) [31-34]. It appears
that most if not all replicating entities exist on or close to
the edge of the "Figen cliff", with the fidelity of replication
only slightly exceeding the minimal requirement (Figure
1) [35].

Alexander Bratus

An intriguing question is whether evolution involves
"selection for evolvability” [36,37] or the existence near
the edge results from the opportunistic character of the
evolutionary process whereby flidelity 1s increased to the
extent strictly necessary but not far beyond that because
further increase would incur substantial cost of selection.
However, discussion of this important problem is beyond
the scope of this article.

2\ '8
%»'7
=z

Figure |
Replicating genetic elements exist close to the repli-
cation error threshold.
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Known results: The error threshold
Ref: Swetina and Schuster, Bioph Chem, 16: 329-345, 1982

Consider the single peaked fitness landscape

M = diag(mo,0,...,0), mg > 0.
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Known results: The error threshold
Consider the single peaked fitness landscape

M = diag(mg, m1,...,m1), mo>my.
20F 0.30
(a) (0)
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Figure : Error threshold in the quasispecies model with the single peaked fitness
landscape (m = (mo, m1,...,m1), mo > m1). The parameters are

N =30, mo = 20, m; = 1. (a) The mean population fitness 7 (u) versus the
mutation rate; (b) the stationary quasispecies distribution versus the mutation rate
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Known results: Statistical Physics

» Leuthdusser, I. (1986). An exact correspondence between Eigen’s evolution
model and a two-dimensional Ising system. The Journal of Chemical Physics,
84(3), 1884-1885.

» Tarazona, P. (1992). Error thresholds for molecular quasispecies as phase
transitions: From simple landscapes to spin-glass models. Physical Review A,
45(8), 6038.

» Baake, E., Baake, M., & Wagner, H. (1997). Ising quantum chain is equivalent
to a model of biological evolution. Physical Review Letters, 78(3), 559-562.

» Galluccio, S. (1997). Exact solution of the quasispecies model in a sharply
peaked fitness landscape. Physical Review E, 56(4), 4526.

> Baake, E., & Wagner, H. (2001). Mutation-selection models solved exactly with
methods of statistical mechanics. Genetical Research, 78(01), 93-117.

» Saakian, D. B., & Hu, C. K. (2006). Exact solution of the Eigen model with
general fitness functions and degradation rates. Proceedings of the National
Academy of Sciences of the USA, 103(13), 4935-4939.
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Main idea:

We consider the eigenvalue problem

(M +pQ)p =mp, m=m:p,
where p = p(u), m = m(p) with a fixed fitness landscape m.

We claim that this problem simplifies in the coordinates of the basis composed
of the eigenvectors of the matrix Q = Q. Recall that

-N 1 0 0

N -N 2 0

. 0 N-1 =N 0
M:dlag(mOa---va)a QN: 0 0 N —2 0
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Proposition: For the matrix Q = Qy:

1. The eigenvalues of @ are simple (all have algebraic multiplicities one) and
given by
qr = —2k, k=0,...,N.

2. Let v} = (cok,---,cnk) be the right eigenvector of Q, corresponding to gx and
normalized such that cor =1, C = Cn = (i) (N+1)x(N+1) be the matrix
composed of vy (vy is the k-th column of Cx). Then the generating function
for the elements of the k-th column has the form

N
P(t) =) et =(1-t)"A+8)" " k=0,...,N.
=0

3. C? =271, where I is the identity matrix, or, equivalently,
c'=2""c.

4. 1-norm of C is
N

IC = max > Jew] = 2.
0<k<N £~

Alexander Bratus Moscow, 2016 19 / 25



Main theorem:

There exists the limit

mg

-1
2N On

N
= lim m(p) =1+
k=0

pH—00

and the corresponding eigenvector

p" = lim p(u) =2 (CR, Cx, ..., CN).

H—r00
Moreover,

L1
lp(n) —p*|| < ;IIMIIL

Alexander Bratus
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Perturbation approximation:

(M + pQ)p = m(u)p,

(1) = o+ (o) gt + 1 (10) (A + o((Apr)?),

2
p(p) = P° +p' Au+p*(Ap)® + o((Ap)?),
m(0) = =N, m(0) =

Fix € > 0. Call p. e-critical value if |mym — m(p)| < € for g > pie.

pe = (Mo — ma1) 1\/1MN

mo — My

ifo= Zg:o Lok < e, and

2 -1 +1
ME:(mo—ml) 1—\/1— (mO )( + )N , 6> e.
mo —mq
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The error threshold

Consider again the single peaked fitness landscape

M = diag(mg, m1,...,m1), mgy > my.
20 0.30
(a) (b)
0.25
15
. 020
= 2
|& 19 R 015
0.10
g
0.05
0 0.00
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Figure : Error threshold in the quasispecies model with the single peaked fitness
landscape (m = (mo, m1,...,m1), mo > m1). The parameters are

N =30, mo = 20, m; = 1. (a) The mean population fitness m(u) versus the
mutation rate; (b) the stationary quasispecies distribution versus the mutation rate

Here
HEigen = 0.633, . = 0.656,

whereas numerical computations suggest pgrror = 0.66.
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Figure 12: Error thresholds on different model landscapes. The figures
show stationary concentrations of mutant elasses as fnctions of the error rate,
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Figure 13: Error thresholds on different model landscapes. The three
figures are enlargements of the plots from in figure 12. Stationary concentrations
of mutant classes, Gg(p), are shown for the single peak landscape (upper part), the
hyperbolic Iandscape (middle part), and the step-linear landseape (lower part; see
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Thank you for your attention!
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