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Quasispecies theory:

Manfred Eigen, born 1927

◮ M. Eigen, Naturwisenschaften,
58(10), 1971:465–523

◮ M. Eigen, P. Schuster, The
Hypercycle, Springer, 1979

◮ M. Eigen, J. McCaskill, P.
Schuster, J Phys Chem, 92(24),
1988:6881-6891

Alexander Bratus Moscow, 2016 2 / 25



Mathematical side of the story:

Ref: M. Eigen, J. McCaskill, P. Schuster, J Phys Chem, 92(24), 1988: 6881-6891
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Model statement:

Consider a very large (infinite) population of haploid individuals (sequences)
with fixed genome length N composed of two-letter alphabet, say, {0, 1},
therefore 2N different sequences. For example, if N = 4 then it is possible to
have 24 different sequences:

[0000], [0001], [0010], [0011],

[0100], [0101], [0110], [0111],

[1000], [1001], [1010], [1011],

[1100], [1101], [1110], [1111].

Different sequences have different fitnesses (selection) and it is possible that 0
at any site mutates into 1 and vice versa (mutations).
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Eigen’s quasispecies model:

The quasispecies model takes into account two evolutionary forces: selection
and mutations. The selection can be described by the diagonal matrix of
fitnesses

W = diag(w1, . . . , wl),

and mutations are described by the double stochastic matrix

Q = [qij ]l×l,

where qij is the probability that macromolecule j produces macromolecule i,
which can be further defined as

qij = qN−dij (1− q)dij ,

where q is the fidelity of replication per site (i.e., 1− q is the probability of
mutation per site), and dij is the Hamming distance between sequences i
and j.
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Eigen’s quasispecies model:
Let nj(t) be the number of sequences of type j at time t. Then, using the
notations from the previous slide,

ṅj =

l
∑

i=1

qjiwini, j = 1, . . . , 2N .

Switching from the absolute sizes to the frequencies, pj(t) =
nj(t)∑
i ni(t)

, leads to

ṗj =

l
∑

i=1

qjiwipi − w̄(t)pj , j = 1, . . . , 2N ,

or, in the matrix form,
ṗ = QWp− w̄(t)p.

Here w̄(t) is the mean population fitness,

w̄(t) =

l
∑

j=1

wjpj(t) = w · p(t).
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Eigen’s quasispecies model:

The only equilibrium point of the Eigen’s quasispecies model satisfies the
equation

QWp = w̄p,

which is the eigenvalue problem for matrix QW . It it quite straightforward to
show that, according to the Perron–Frobenius theorem, there is always a
solution to this problem, where w̄ is the leading (dominant) real positive
eigenvalue and p > 0 is a corresponding eigenvector. Moreover, this
equilibrium point is globally asymptotically stable.
This vector p was called the quasispecies by Eigen.
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Crow–Kimura quasispecies model:

In the following we consider a modification of the original Eigen’s model. This
modification takes into account two things:

◮ First, we assume that all the sequences with the same number of 1s have
exactly the same fitness. This means that we do not distinguish, e.g.,
between sequences [0010] and [0100] and thus have to deal with N + 1
classes of sequences instead of 2N types of macromolecules.

◮ Second, instead of taking into account probabilities, as was done originally
by Eigen, we will concentrate, as it is more natural in the continuous time
settings, on the rates µij .

The evolutionary force of selection is included through the fitness landscape,
which in our case is given by a diagonal matrix

M = diag(m0, . . . ,mN ),

where mj is the fitness of the j-th class of sequences.
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Model statement:

The second evolutionary force is mutation.

In particular, assuming N + 1 classes of sequences, we have that the mutations
µij (i.e., the mutation rate from class j to class i) can be described by the
matrix

M = (µij) = µQ = µ





















−N 1 0 0 . . . . . . 0
N −N 2 0 . . . . . . 0
0 N − 1 −N 3 . . . . . . 0
0 0 N − 2 −N . . . . . . 0
. . . . . . . . . . . . . . . . . . . . .

0 0 . . . . . . 2 −N N

0 0 . . . . . . 0 1 −N





















,

where µ is the mutation rate per site per sequence per replication event.
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Model statement:

Let p(t) denote the vector of frequencies of different classes of sequences, then,
assuming uncoupled reproduction and mutation events, we arrive at

ṗ(t) = (M + µQ)p(t)−m(t)p(t),

where

m(t) = m · p(t) =
N
∑

i=0

mipi(t)

is the mean population fitness.

This model is often called a paramuse of Crow–Kimura quasispecies model
with permutation invariant fitness landscape.

Ref: Baake and Gabriel, Annual Reviews of Computational Physics VII, 1999: 203–264

Ref: Crow and Kimura, An introduction to population genetics theory, 1970

Alexander Bratus Moscow, 2016 10 / 25



Elementary results:

The asymptotic behavior of the quasispecies model is determined by the
equilibrium p = limt→∞ p(t), which solves the eigenvalue problem

(M + µQ)p = mp,

where

m = m · p =

N
∑

i=0

mipi.

By Perron–Frobenius theorem it follows that there is a unique positive
solution p > 0, which is the right eigenvector of M + µQ corresponding to the
simple real dominant eigenvalue λ = m.

This vector p was called by Eigen the quasispecies. It is globally stable for the
quasispecies system. We are mostly interested in properties of m and p

depending on the fitness landscape M and mutation rate µ, therefore, we use
the notation m = m(µ) and p = p(µ) for the mean fitness and equilibrium
distribution.
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Known results: The error threshold

Alexander Bratus Moscow, 2016 12 / 25



Known results: The error threshold

Alexander Bratus Moscow, 2016 13 / 25



Known results: The error threshold

Alexander Bratus Moscow, 2016 14 / 25



Known results: The error threshold

Ref: Swetina and Schuster, Bioph Chem, 16: 329–345, 1982

Consider the single peaked fitness landscape

M = diag(m0, 0, . . . , 0), m0 > 0.
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Known results: The error threshold
Consider the single peaked fitness landscape

M = diag(m0,m1, . . . ,m1), m0 > m1.

Figure : Error threshold in the quasispecies model with the single peaked fitness
landscape (m = (m0, m1, . . . , m1), m0 > m1). The parameters are
N = 30, m0 = 20, m1 = 1. (a) The mean population fitness m(µ) versus the
mutation rate; (b) the stationary quasispecies distribution versus the mutation rate
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Known results: Statistical Physics

◮ Leuthäusser, I. (1986). An exact correspondence between Eigen’s evolution
model and a two-dimensional Ising system. The Journal of Chemical Physics,
84(3), 1884-1885.

◮ Tarazona, P. (1992). Error thresholds for molecular quasispecies as phase
transitions: From simple landscapes to spin-glass models. Physical Review A,
45(8), 6038.

◮ Baake, E., Baake, M., & Wagner, H. (1997). Ising quantum chain is equivalent
to a model of biological evolution. Physical Review Letters, 78(3), 559-562.

◮ Galluccio, S. (1997). Exact solution of the quasispecies model in a sharply
peaked fitness landscape. Physical Review E, 56(4), 4526.

◮ Baake, E., & Wagner, H. (2001). Mutation-selection models solved exactly with
methods of statistical mechanics. Genetical Research, 78(01), 93-117.

◮ Saakian, D. B., & Hu, C. K. (2006). Exact solution of the Eigen model with
general fitness functions and degradation rates. Proceedings of the National
Academy of Sciences of the USA, 103(13), 4935-4939.
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Main idea:

We consider the eigenvalue problem

(M + µQ)p = mp, m = m · p,

where p = p(µ), m = m(µ) with a fixed fitness landscape m.

We claim that this problem simplifies in the coordinates of the basis composed
of the eigenvectors of the matrix Q = QN . Recall that

M = diag(m0, . . . ,mN ), QN =

















−N 1 0 . . . . . . 0
N −N 2 . . . . . . 0
0 N − 1 −N . . . . . . 0
0 0 N − 2 . . . . . . 0
. . . . . . . . . . . . . . . . . .

0 0 . . . 0 1 −N
















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Proposition: For the matrix Q = QN :

1. The eigenvalues of Q
N

are simple (all have algebraic multiplicities one) and
given by

qk = −2k, k = 0, . . . , N.

2. Let v⊤
k = (c0k, . . . , cNk) be the right eigenvector of Q

N
corresponding to qk and

normalized such that c0k = 1, C = CN = (cik)(N+1)×(N+1) be the matrix
composed of vk (vk is the k-th column of CN). Then the generating function
for the elements of the k-th column has the form

Pk(t) =

N∑

i=0

cik t
i = (1− t)k(1 + t)N−k

, k = 0, . . . , N.

3. C2 = 2NI, where I is the identity matrix, or, equivalently,

C
−1 = 2−N

C.

4. 1-norm of C is

‖C‖1 = max
0≤k≤N

N∑

i=0

|cik| = 2N .
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Main theorem:

There exists the limit

m̄∗ = lim
µ→∞

m̄(µ) = 1 +

N
∑

k=0

mk − 1

2N
Ck

N

and the corresponding eigenvector

p∗ = lim
µ→∞

p(µ) = 2−N(C0
N , C1

N , . . . , CN
N ).

Moreover,

‖p(µ)− p∗‖ ≤
1

µ
‖M‖1.
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Perturbation approximation:

(M + µQ)p = m̄(µ)p,

m̄(µ) = m̄0 + m̄′(µ0)∆µ+
1

2
m̄′′(µ0)(∆µ)2 + o((∆µ)2),

p(µ) = p0 + p1∆µ+ p2(∆µ)2 + o((∆µ)2),

m̄′(0) = −N, m̄′′(0) =
N

m0 −m1
.

Fix ε > 0. Call µε ε-critical value if |m̄lim − m̄(µ)| < ε for µ > µε.

µε = (m0 −m1)



1−

√

1−
2(m0 − 1)

m0 −m1
N





if δ =
∑N

k=0
mk−1
2N Ck

N < ε, and

µε = (m0 −m1)



1−

√

1−
2(m0 − 1)(δ + 1)

m0 −m1
N



 , δ > ε.
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The error threshold
Consider again the single peaked fitness landscape
M = diag(m0,m1, . . . ,m1), m0 > m1.

Figure : Error threshold in the quasispecies model with the single peaked fitness
landscape (m = (m0, m1, . . . , m1), m0 > m1). The parameters are
N = 30, m0 = 20, m1 = 1. (a) The mean population fitness m(µ) versus the
mutation rate; (b) the stationary quasispecies distribution versus the mutation rate

Here
µEigen = 0.633, µε = 0.656,

whereas numerical computations suggest µError = 0.66.
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Thank you for your attention!
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