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Motivation

Find the structure of the textile g(x), which delivers the effective prop-
erties as close as possible to the desired values under prescribed displace-
ment at the boundary of the fabric.

Parameters set g(x) is controllable during the manufacturing process
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Statement of periodic problem

Consider the following problem in parameter-dependent
e-periodic domain €)°:

1. Linear elasticity equation:

-

—V - (o°(x)) =0, x € Q°, o°(x) = A (x)e(u’(x))

A (z) is symmetric uniformly positive-definite 4th
order tensor, e(u) = Vu + Vu! is symmetrized
displacement gradient.

2. Robin-type conditions at the contact interface:

(6°n°)y = —[u'n, (0°n7)r = —[u’]s,

3. Boundary conditions:

_______________________

u®(x) =l(x), x € 00, o°n® =0, x € INYy.
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State of the art in homogenization

Cioranescu, D., Damlamian, A. and Orlik, J.: Homogenization via
unfolding in periodic elasticity with contact on closed and open cracks,
Asymptotic Analysis, 82(3), 201-232, 2013.

Kikuchi, N., Oden J.T. Contact Problems in FElasticity: A Study of
Variatoinal Inequalities and Finite Elements Methods, STAM studies
in applied mathematics. STAM, 1987.

Hummel, H.-K.: Homogenization for heat transfer in polycrystals
with interfacial resistances, Applicable Analysis, 75 (3—4), 403-424,
2000.
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Homogenization

o5

Consider periodic structure €2° with period ¢ in do-
main €2° and the following family of problems for dis-
placement field u® € H'(Q°)

V.o (x) =0, x €, o°(x) = A% (x)e(u(x)),
u®(x) =Il(x), on 0N,
o (x)n(x) =0, x € 0Ny
o (x)n°(x) = R°(x)[u], on I'".
Theorem. Undefr proper conditions, as € — 0 there
exist function u® and 4th order symmetmc posztwe definite

tensor A"™ and extensions 4° of u® and A of A® into
Q5 such that ||u 0||L2(QE — 0,

50)

V- 0'0(33) =0, x € Q, Jo(m) = Ahom(m)e(uﬂ(m))’
u’(x) = l(zx), on dQp,
a-ﬂ(gj)n(a:) =0, on 0 y.

No Robin-type conditions in the limit problem.
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Homogenization

In the limit problem V- %(z) =0, & € Q, o°(x) = A"™(x)e(u’(x)),
u’(x) = 1l(x), on OQp,

l
o’(x)n(x) =0, on OQ,
the tensor A™™ is to be obtained from the solutions of the cell problems:

hom __ ‘Ldl

ik = (Y] Q(ﬁ(wz‘j) +e;;): A(x)(e(wp) + ey) de+

wl .
W e C(s)wij]: RC(s)[wn]ds,

R = diag (5,6, ', 6; '),

where Y is the periodicity cell, w;; € H}(Y) satisfies

VAR G‘ZJ(;E) =0, xeY, cr;.;j(a:) = A(ZE)(B(TUU) + Bf,.;j)}
az-j(s)n(s) = RC(S)[‘wij], on I'c.

Theorem. The homogenized tensor is continuous w.r.t. the geometrical params.
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Plain strain motivation

We are concerned with only in-plane properties of textiles. w

e cell geometries are essentially three-dimensional,

AVVOTOTITICROTININNR, ZVUIUTUTIIVIITNN, AFOrorruiirranar e, T TIRiTOR

e 2D elasticity problem is desired in the limit.

Only in-plane homogenized properties are of interest. They are
defined from the following 3 cell problems:

w11 Wiz, W21

’
-
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REDUCTION TO BEAM MODELS
IN THE CELL PROBLEMS
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Cell problems: reduction to beam models
1D graph problem:

EA’ILllI — fl,
ElTubY; = fo3,
JGull = f4,

(FAw)] [EI) [EIw) [GJu)) —[EIu) [Elu) ..)" =
= —QT (V?P_fo + V?;PMVA{) Qw,
! ! ! ! T
w = (u1:u2;u3:u4:_u37u2ivlav2at’13:v4:_U33v2) 3

+ boundary and force-moment transmission conditions.

1D-3D reconstruction formulas are used to compute the ef-
fective tensor from the set of four 1D functions.

Trabucho L., Viano J.M.: Mathematical modelling of rods. Hand- | l
book of numerical analysis, vol. 4, p. 487-974. Elsevier Science,
1996.

Baré D., Orlik J., and Panasenko G.: Asymptotic dimension - __
reduction of a Robin-type elasticity boundary value problem in -{qu}.
thin beams, Applicable Analysis, 2013. ] '
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Cell problems: derivatives of the effective tensor

Further in optimization we’ll need the derivatives of the cell problems’ solutions with
respect to g as a parameter.

e The exact solution of the cell graph 1D problem can be found from a linear algebraic
system of equations similar to the standard finite element method systems. The direct
FEM system is

Kii(9)a;;(9) = fi; " (9).

where K;;(g) and f%EM (g) are known functions of geometrical parameters g.

e Differentiation of the above system with respect to g yields the derivative FEM system
FEM
0g K ij (Q)Q@j(g) + Kj (9)59%‘3‘ (9) = 5g-fz‘j (g)-

dgKij(g) and dq _ff;,-EM (g) can be obtained with automatic symbolic differentiation.
Isolate dgq,,(g):

Kt'.j(g)(sgq@‘j(g) = 6g.ngM(g) - 5gKe'j(Q)qz‘j (g)

At this point we are able to compute the derivatives of the effective tensor 59Ah°m by
the chain rule.
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Design space

e the microgeometry at a point x is parametrized by two numbers g(x) = (g.(x), g,(x)),

e ge Uy €(04,0.8] x[0.4,0.8].

The video.
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The homogenized coefficients as functions of the params

e no convexity of the homogenized properties with respect to the geometrical parameters

hom h
AT A7755
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Stress profile optimization

Consider the following optimization problem.

1g) = [ (A" (g)e(u(g)) ~ os) : (A" (g)e(ulg)) ~ o) do — min,

V- (A"™"(g)e(u)) = 0 in €,
u =1 on 899?
A"™(g)e(u)n = 0 on ONy.

This is a PDE-constrained optimization problem.
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Adjoint approach for the homogenized equation

Theorem. The minimizer exists in any bounded set in the space of Lips-
chitz functions.
Standard procedure of the objective functional’s gradient computation leads

to

dgJ = 2/(Ah°me('u,) —0%): (6,A™™e(u)) dx — 2] 5g A" e(u) : e(p) dx,
Q

Q

h(g) = A™"(g)(A™™"(g)e(u(g)) — o),

where p is the solution of the adjoint problem

V- (A" (g)e(p)) = -V -hin Q,
p=0on JdQp,
A"™(g)e(p)n = —hn on INy.

Allaire, G. Shape optimization by the Homogenization Method, Springer, 2001.

Hinze, M., Pinnau, R., Ulbrich, M. and Ulbrich, S.Optimization with PDE
Constraints, Springer, 2010.
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Optimization loop scheme

With A™™ and 59Ah”m obtained from the cell problems, we are ready
to close the projected gradient method’s optimization loop:

g"nJrl = Pry, (g" —aVgJ(g")).

¢
bl
problems probrem

Adjoint @
@ problem

The video.
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Poisson’s ratio optimization

Homogenization often yields orthotropic effective tensors.
Hooke’s law of a 2D orthotropic material has the following form:

011 pE1  pEivey O €11
o2 | = | pEavia  plks 0 g2a |,
J12 0 0 G12 2812

where p = (1 — Lflgb‘gl)_l. Anisotropic Poisson’s ratios can be computed
as

v;; characterizes contraction of the structure in the j-th direction when
stretched in the i-th direction. In the textile industry this effect is usually
to be reduced.

A study on properties of homogenized tensors is available in
Bakhvalov N., Panasenko G.: Homogenization: Averaging processes in
periodic media. Springer, 1989.
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Poisson’s ratio optimization

Assume that A"™™ and its increments 59Ah°m are available, then

59Ah0m1122 Altu:u:n1122

OglV12 = - g AlO™
gt12 hom 9 g 2222,
hom
ANOMo999  Ahom,
h h
0gA™ ™M 190 A" 199 hom
) Vo1 = — g A 1
g Ahom 1111 AthQ g 111-
1111

Projected gradient descent procedure with respect to g:

g"t! =Pry, (¢" — aVgri2(g")),

g"*tt =Pry, (" — aVgrai(gh)).
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Poisson’s ratios optimization: numerical example

Two initially square fabrics of different microstructure undergo the
same vertical strain. The left one is optimized for the minimum Poisson’s
ratio. The right one is optimized for the maximum Poisson’s ratio.

vo1 = 0.2671 vo1 = 0.8639
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