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 A. Nealen et al  Computer Graphics Forum, 2006  

 B. Gilles et al ACM Transactions on Graphics, 2011 



Mass-Spring Model (MSM) 
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MSM: topology and spring stiffness 
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• Topology identification 
–  different learning algorithms 

–  tetrahedral mesh topology. 

G. Bianchi et al Proc. MICCAI ’04, 2004 
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MSM: spring stiffness. Example. 
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For regular tetrahedral mesh 

In case of irregular tetrahedral 
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 - edge length 

- Young’s modulus 

- equivalent edge length 

- volume of element 

B. Lloyd et al  IEEE Transactions on Visualization and Computer Graphics, 2007 
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For regular tetrahedral mesh 

In case of irregular tetrahedral 
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! Limited to some specific values of Poisson’s ratio; valid for small deformations 



MSM: cubical mesh 

• Topology cubical mesh 

 

 

 

 

• Spring stiffness - fitting procedure 
 G. San-Vicente, (2011) “Designing deformable models of soft tissue for 

virtual surgery planning and simulation using the Mass-Spring Model”. 
PhD thesis. 
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• Spring stiffness - fitting procedure 
 G. San-Vicente, (2011) “Designing deformable models of soft tissue for 

virtual surgery planning and simulation using the Mass-Spring Model”. 
PhD thesis. 

 ! Material nonlinearity; but regular cubical mesh, fitting procedure  



MSM: examples 

Porcine liver and gallbladder deformation:  
Y. Duan et al Lecture Notes in Computer Science, 2013 



MSM: examples 

Brain model deformation: 
G. San-Vicente et al IEEE Transactions on Visualization and Computer Graphics, 2012 



MSM: pros and cons 

Pros: 
• Easy to construct 
• Allowing real-time simulations 
• Ability to deal with large deformations 
• Computationally attractive 
Cons: 
• Spring stiffness estimation 
• Topology identification 
• Difficult to express constraints such as 

incompressibility and anisotropy 



Frame-based elastic models 

• Interpolating rigid transformations - skinning 

 

 

 

• Continuum mechanics + skinning 

 



F-B elastic models: examples 

Interactive knee simulation using 10 frames. Pulling  the 
quadriceps lifts the tibia.   

F. Faure et al ACM Transactions on Graphics, 2011 



F-B elastic models: pros and cons 

Pros: 
• Robust to large deformations 

• Computationally attractive 

• Material nonlinearity 

• Small number of moving frames to model complex 
materials and geometry 

Cons 

• Weight functions choice 

• Optimal placement of frames 
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Project : Abdominal cavity expansion during laparoscopic surgery (CO2-pneumoperitoneum). 
(jointly with Vassilevski Yu., Simakov S., Danilov A., Mynbaev O.) 


