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1. Nonsingular M–matrix.

Matrix S = (sij), 1 ≤ i, j ≤ m, with elements sij ≤ 0, i 6= j,
is called to be a nonsingular M–matrix,

if S satisfies ≈ 50 equivalent properties (see, Berman and
Plemons; Kuznetsov and Voevodin), for example:

• S−1 exists and has nonnegative elements;

• all corner (diagonal) minors of S are positive;

• all eigenvalues λS of S are such, that Re(λS) > 0;

• ∃ z ∈ Rm, z > 0, such that Sz > 0,

z > 0⇐⇒ zi > 0, z ≥ 0⇐⇒ zi ≥ 0, 1 ≤ i ≤ m.
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2. Systems of linear differential equations (LDE)
and stability of trivial solutions.

Let us consider the system of LDE:

x = x(t) ∈ Rm, ẋ = Qx, (2.1)

m×m matrix Q = (qij) has elements qij ≥ 0, i 6= j.

Trivial solution x = 0 of (2.1) is asymptotically stable ⇐⇒
S = −Q is nonsingular M–matrix.

Note: we don’t solve the problem of finding eigenvalues λQ.

We will check, that the matrix S = −Q satisfies one of the equivalent properties to be
a nonsingular M–matrix.

• Original criteria: trivial solution x = 0 of (2.1) is asymptotically stable ⇐⇒ Q

satisfies the Sevast’janov–Kotelj’anskii criteria (−1)kM (k) > 0, 1 ≤ k ≤ m, where
M (k) — corner (diagonal) minor of Q of order k (see, Gantmakher).
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Lets investigate the more general system of LDE

x = x(t) ∈ Rm, ẋ = Ax, (2.2)

where A = (aij), aii < 0, 1 ≤ i ≤ m, aij ∈ R, i 6= j.

Denote: A(+) = (a+
ij), a

+
ij = |aij| ≥ 0, i 6= j, a+

ii = aii < 0.

Suppose, that S = −A(+) is nonsingular M–matrix.

Then solution x = 0 of (2.2) is asymptotically stable.
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3. Stability of equilibriums in the model of dynamics
of a population affected by harmful substances.

We consider a population of individuals whose dynamics is
determined by the following factors:

pollutants C1, . . . , Ck enter the habitat, decay, accumulate in food sources, and are
ingested by individuals;

the ingested pollutants C1, . . . , Ck interact among each other and form a harmpful
substance;

individuals bring offspring;

individuals die due to self–limitation and irreversible influence of harmpful substance;

the migration of individuals from the outside is absent.

• Original model: N. Pertsev and G. Tsaregorodtseva, 2011.
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Denote: x = x(t) – number of individuals; ci = ci(t) – amount
of pollutant Ci, 1 ≤ i ≤ k. The model equations:

ċi = ri − θi(ci)x− δici, 1 ≤ i ≤ k, (3.1)

ẋ = βx− γx2 − θ(c1, . . . , ck)x, t > 0, (3.2)

cj(0) = c
(0)
j ≥ 0, 1 ≤ j ≤ k, x(0) = x(0) ≥ 0, (3.3)

ri = const > 0, δi = const > 0 – the rates of inflow and decay for pollutant Ci;

θi(ci) determins ingested rate by one individual of pollutant Ci contained in food;

θ(c1, . . . , ck) = σ
∏k

i=1 θ
ni

i (ci) describes the death rate of individuals due to harmpful
substance, σ = const > 0, ni = const > 0;

β = const > 0 – birth rate of individuals;

γ = const > 0 – parameter reflecting the intensity of interaction between the
individuals.

We suppose, that θi(ci) is continuous and increasing, ci ∈ R+ = [0,∞), θi(0) = 0,

∃ 0 < limci→+∞ θi(ci) = θ̄i <∞, ∃ continuous θ′i(ci) ≥ 0, ci ∈ R+, 1 ≤ i ≤ k.
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For the equilibriums we have to find solutions of the system

ri − θi(ci)x− δici = 0, ci ≥ 0, 1 ≤ i ≤ k, (3.4)

(β − γx− θ(c1, . . . , ck))x = 0, x ≥ 0. (3.5)

Nontrivial equilibrium: x = x̄ > 0. Fix 1 ≤ i ≤ k and consider
(3.4) in the form

ri − δici = θi(ci)x. (3.6)

For fixed x ≥ 0 equation (3.6) has only one root c̄i = c̄i(x) > 0.
Lets introduce the function

h(x) = θ(c̄1(x), . . . , c̄k(x)) = σ
k∏
i=1

θni

i (c̄i(x)), x ∈ R+. (3.7)

For finding the roots x̄ we use (3.5) and solve the equation

β − γx = h(x), 0 ≤ x ≤ β/γ. (3.8)

If x̄ > 0 – root of (3.8), then c̄i > 0 one can find from (3.6).
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Now we use method of linearization to study the problem of
asymptotic stability of nontrivial equilibrium.

Denote yi = ci − c̄i, 1 ≤ i ≤ k, yk+1 = x − x̄, m = k + 1

and lets investigate the system of LDE

y = y(t) ∈ Rm, ẏ = Ay, (3.9)

A =



a11 0 0 ... 0 a1m

0 a22 0 ... 0 a2m

0 0 a33 ... 0 a3m

... ... ... ... ... ...

0 0 0 ... −akk akm
am1 am2 am3 ... amk amm


,

aii = −θ′i(c̄i)x̄− δi < 0, aim = −θi(c̄i) ≤ 0, 1 ≤ i ≤ k,

amj = −θ′cj(c̄1, . . . , c̄k)x̄ ≤ 0, 1 ≤ j ≤ k, amm = −γx̄ < 0.
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Eigenvalues λ = λA are roots of characteristic equation

det(A− λI) = (−1)mλm + r1λ
m−1 + r2λ

m−2 + · · ·+ rm = 0,

rm = det(A) =
k∏
i=1

aii(amm −
k∑
j=1

amj ajm/ajj) =

= (−1)mx̄
k∏
i=1

(θ′i(c̄i)x̄+ δi)(h
′(x̄) + γ).

Using well–known results, we have:

• if h′(x̄) + γ < 0, then equilibrium is unstable;
• inequality h′(x̄) + γ > 0 gives nesessary condition for
asymptotic stability of equilibrium.

The analysis of S = −A(+) gives us the sufficient condition:

h′(x̄) + γ > 0. (3.10)
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Inequality h′(x̄) + γ > 0 is nesessary and sufficient for
asymptotic stability of equilibrium x̄ > 0 of simple DE

ẋ = (β − γx− h(x))x.

Fig.1. Typical graphs of f(x) = β − γx and h(x),
P1, P3, P6 – unstable cases, P2, P4, P5, P7, P8 – asymp. stable cases.
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SUMMARY. Some properties of solutions of high–dimension
model

ċi = ri − θi(ci)x− δici, 1 ≤ i ≤ k,

ẋ = βx− γx2 − θ(c1, . . . , ck)x, t > 0,

cj(0) = c
(0)
j ≥ 0, 1 ≤ j ≤ k, x(0) = x(0) ≥ 0,

may be studied by means of one–dimension model

ẋ = βx− γx2 − h(x)x, t > 0,

x(0) = x(0) ≥ 0.

Note: we don’t use the well–known Tikhonov theorem about
«fast» and «slow» variables in biological models.
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4. Global stability of trivial equilibrium in the model
of spread of HIV–infection.

Let: S1, . . . , Sn — groups of HIV–susceptible individuals,
I1, . . . , In — groups of HIV–infected individuals,

Si(t), Ii(t) – number of individuals of groups Si, Ii at time t.

Model equations (1 ≤ i ≤ n):

Ṡi =
n∑

k=1,k 6=i
ρkiSk −

n∑
k=1

ρikSi −
n∑
j=1

βijIjSi + fi, (4.1)

İi =
n∑

k=1,k 6=i
αkiIk −

n∑
k=1

αikIi +
n∑
j=1

βijIjSi, t > 0, (4.2)

Si(0) = S0
i ≥ 0, Ii(0) = I0

i ≥ 0. (4.3)

• Original model: A. Romanyukha and E. Nosova, 2010–2012, for n = 4,

model equations (4.1)–(4.3): N. Pertsev, 2013.
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Ṡi =
n∑

k=1,k 6=i
ρkiSk −

n∑
k=1

ρikSi −
n∑
j=1

βijIjSi + fi, (4.1)

İi =
n∑

k=1,k 6=i
αkiIk −

n∑
k=1

αikIi +
n∑
j=1

βijIjSi, t > 0. (4.2)

fi ≥ 0 — immigration rates for individuals from another regions;

ρik ≥ 0, αjk ≥ 0, i, j 6= k — transition rates for individuals between the groups;

ρii > 0, αjj > 0 — death rates of individuals;

βij ≥ 0 — interaction rates between individuals Si and Ij;

βi1 + · · ·+ βin > 0, 1 ≤ i ≤ n.
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Denote: x = x(t) = (S1(t), . . . , Sn(t))
T ,

y = y(t) = (I1(t), . . . , In(t))
T . Model equations:

ẋ = Ax−D(x)Gy + f, (4.4)

ẏ = By +D(x)Gy, t > 0, (4.5)

x(0) = x0 ≥ 0, y(0) = y0 ≥ 0, (4.6)

f = (f1, . . . , fn)T ≥ 0,

A = (aij), aii = −
n∑

k=1

ρik < 0, aik = ρki ≥ 0, 1 ≤ i, k ≤ n, k 6= i,

B = (bij), bii = −
n∑

k=1

αik < 0, bik = αki ≥ 0, 1 ≤ i, k ≤ n, k 6= i,

G = (gij), gij = βij, 1 ≤ i, j ≤ n,

D(x) = diag(x1, . . . , xn).

For A and B we have: (−A)T ξ > 0, (−B)T ξ > 0,

ξ = (1, . . . , 1)T . Hence, (−A) and (−B) — are nonsingular
M–matrices.
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Model equations

ẋ = Ax−D(x)Gy + f, ẏ = By +D(x)Gy,

have trivial equilibrium x∗ = (−A)−1f ≥ 0, y∗ = 0.

Now we use method of linearization and investigate the system
of LDE for u = x− x∗, w = y − y∗:

u̇ = Au−D(x∗)Gw, (4.7)

ẇ = 0u+ (B +D(x∗)G)w. (4.8)

Suppose, that (−1)(B + D(x∗)G) is nonsingular M–matrix.
Then solution u = 0, w = 0 of (4.7), (4.8) is asymptotically
stable.

If (−1)(B +D(x∗)G) is not nonsingular M–matrix
and det(B + D(x∗)G) 6= 0, then solution u = 0, w = 0 of
(4.7), (4.8) is unstable.
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More general result for solutions x(t), y(t) of (4.4)–(4.6).

Suppose, that (−1)(B +D(x∗)G) is nonsingular M–matrix.

Then for arbitrary initial data (4.6)

lim
t→+∞

x(t) = x∗, lim
t→+∞

y(t) = y∗ = 0, (4.9)

and inequalities are valid

0 ≤ y(t) ≤ Ce−γt, t ≥ 0, (4.10)

where C ∈ Rm, C > 0, γ ∈ R, γ > 0.

SUMMARY. We have sufficient conditions for the extinction
of the infection process expressed in terms of M–matrices.

Suppose, for example, that several groups of S1, . . . , Sn are
small enough, x∗i ≈ 0, i = i1, . . . , im.

Then (−1)(B +D(x∗)G) may be a nonsingular M–matrix.


