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A few definitions: evolution or adaptation of cell populations

[Naive and utilitary definitions]

• Evolution: constitution of a new species (cell population of a new type) by
genetic mutations (including single nucleotide substitutions, deletions,
translocations...), i.e. irreversible modifications of the genome ‘written in the
marble of the genetic code’, resulting in a new phenotype

• Adaptation: modification of a cell type also resulting in a new phenotype in a
cell population, but reversible, i.e., amenable to complete restitution of the
initial phenotype, with preservation of the intact genome (= of the initial
sequence of base pairs)
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Mutations, epimutations in cell populations

[Again, naive and utilitary definitions]

• [Genetic] mutation: irreversible modification of the genome (cf. Evolution)

• Epigenetic modification = ‘epimutation’: modification of the phenotype due to
mechanisms that do not affect the genetic code, but are due to silencing of
genes (that may be activators or inhibitors of the expression of other genes) by
DNA methylation and histone methylation or acetylation
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Cancer as an evolutionary disease

[See recent viewpoint by JC, P. Magal and V. Volpert in ESMTB bulletin (Eur.
Comm. Math. Theor. Biol. 16:17-20, 2013): “Cancer as evolutionary process”]

What is, or is there, an “origin of cancer”? Could it be:

• ... just an abnormal cell clone emerging from a single “renegade” cell?

• ... resulting from a sequence of mutations/deletions/translocations? occurring in an
inevitable way... or else should we ask rather:

• “Do mutations beget cancers or do cancers beget mutations?” (Prehn, Canc. Res. 1994)
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An ideal scenario for ‘cell environmental’ therapies?

• An ecological-like answer could be: Stochastic molecular events at the single cell level
yield cells that are normally unfit in a healthy environment, and have no progeny; but in
a disrupted environment (e.g., unbalanced w.r.t. metabolic resources, or under cytotoxic
drug pressure), such newly generated cells thrive, eventually in organised populations, at
the expense of their formerly more fit neighbours

• Hence, conversely, in an ideally reestablished healthy environment, transformed cells - at
least those that have not been able to gather into viable tumours - should disappear by
lack of progeny

• To represent environmental resistance-inducing drug pressure and [environment
correction or] drug delivery strategies that might be used to overcome such drug
resistance, the cell population level is the best adapted to model and theoretically
optimise these drug effects
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Different viewpoints to represent antitumour therapies
• At the molecular level: representing specific molecular targets in cancer cells hit

by targeted therapies; presently a popular viewpoint among cancer biologists
Achievements: imatinib in chronic myelogenous leukaemia (CML),
ATRA+anthracyclins in acute promyelocytic leukaemia (APL)
Problems: (often very) relative specificity; toxicity to healthy tissues; not taking
into account tumour heterogeneity (polyclonality) and emergence of resistance

• At the molecular level: taking into accounts all intracellular molecular pathways
involved in proliferation, cell death and [de-]differentiation
Advantages: exhaustive representation (a biocomputer scientist’s point of view)
Problems: scores of reaction networks, hundreds of parameters to estimate, not
amenable to take into account evolution towards drug resistance

• At the cell population level: representing functional targets for drugs in
controlled cell population dynamic models: PDEs or IDEs (integro-differential)
“Functional?” : i.e., by designing targets in controlled cell population dynamic
models related to those fates that are considered as relevant for cell and tissue
behaviour in cancer: proliferation, cell death, [de-]differentiation, motility
Advantages: the right level to take into account population level effects (in
particular emergence of resistance) and to design theoretical optimisation
strategies for continuous drug delivery
Problems: attributing to given drugs specific functional effects; macroscopic (cell
cultures, ex-vivo and in-vivo) rather than molecular data (but is it a drawback?)
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Drug resistance:
a phenomenon common to various therapeutic situations

• In therapeutic situations where an external pathogenic agent is proliferating at
the expense of the resources of an organism: antibiotherapy, virology,
parasitology, target populations are able to develop drug resistance mechanisms
(e.g., expression of β-lactamase in bacteria submitted to amoxicillin).

• In cancer, there is no external pathogenic agent (even though one may have
favoured the disease) and the target cell populations share much of their
genome with the host healthy cell population, making overexpression of natural
defence phenomena easy (e.g., ABC transporters in cancer cells).

• Drug resistance may account for unexpected failures in targeted therapies.
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Drug resistance: how does it work?

• What was formerly assumed: 0-1 expression of genes (e.g., functional or
inefficient p53 due to a mutation)

• Varying expressivity of genes in a cell population, or else degree of effectiveness
of mutations (e.g., mutated EGFR)

• Varying activity of ABC transporters (e.g., P-gp), main effectors of drug efflux
out of cells

• Darwinian effects of drug pressure selecting subpopulations in a heterogeneously
constituted (by stochastic variations: bet hedging?) cell population

• Transient adaptation to hostile environments by subclones in the cell population?
Note that we deal with drug-induced, not constitutive drug-resistance
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Drug resistance: evolutionary bottlenecks in cancer

• Furthermore, animal genome (of the host to cancer) is rich and amenable to
adaptation scenarios that may recapitulate developmental scenarios abandoned
in the process of evolution from protozoa to metazoa (Davies & Lineweaver
2011).

• So that drug therapy may be followed, after initial success, by relapse due to
selection of a resistant clone (Ding et al. 2012).
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Molecular mechanisms at the single cell level
vs. Phenotypes at the cell population level

• Overexpression of ABC transporters, of drug processing enzymes, decrease of
drug cellular influx, etc. are relevant to describe resistance mechanisms at the
single cell level.

• At the cell population level, representing drug resistance by a continuous
variable x standing for a resistance phenotype (in evolutionary game theory: a
strategy) is adapted to describe evolution from sensitivity (x = 0) towards
resistance (x = 1).

• Is it due to sheer Darwinian selection of the fittest after cell division or, at least
partially, due to adaptation of individual cells? Not clear.
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1st IDE model, mutations, one cytotoxic drug: cancer cells

• x = level of expression of a drug resistance phenotype (to a given drug)
• nH(x , t), nC (x , t) densities of cell populations (H=healthy, C=tumour)

∂

∂t
nC (x , t) =

[ growth︷ ︸︸ ︷
(1− θC ) r(x)−

death︷︸︸︷
d(x) −

drug effect︷ ︸︸ ︷
u(t)µC (x)

]
nC (x , t)

+θC

birth with mutation︷ ︸︸ ︷∫
r(y)MσC (y , x)nC (y , t)dy

• r(x) = basic reproduction rate, d(x) = basic death rate; we assume
r(0) > d(0) > 0, r ′(·) < 0, r(+∞) = 0, d ′(·) > 0,
• 0 ≤ θH,C < 1 (θC > θH) is the proportion of divisions with mutations,
• µ[H,C ](x) (with µ′C (·) < 0) represents the phenotype-dependent response to
cytotoxic drug, with concentration u(t), designed to target cancer cells.

• Note: assumptions r(·) > 0, µC (·) > 0, µ′C (·) < 0 and r ′(·) < 0 (cost of resistance:

the higher is x , the lower is proliferation) represent an evolutionary double bind on

resistant cancer cell populations, i.e., an evolutionary trade-off between growing (thus

getting exposed) and keeping still (thus surviving)
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1st IDE model, mutations, one cytotoxic drug: healthy cells

∂

∂t
nH(x , t) =

[ growth with homeostasis︷ ︸︸ ︷
1− θH(

1 + ρ(t)
)β r(x) −

death︷︸︸︷
d(x) −

drug effect︷ ︸︸ ︷
u(t)µH(x)

]
nH(x , t)

+
θH(

1 + ρ(t)
)β

birth with mutation︷ ︸︸ ︷∫
r(y)MσH (y , x)nH(y , t)dy ,

where the total population is defined as

ρ(t) = ρH(t) + ρC (t); ρH(t) =
∫∞
x=0 nH(x , t)dx ; ρC (t) =

∫∞
x=0 nC (x , t)dx .

• β > 0 to impose healthy tissue homeostasis,

• u(t) denotes the instantaneous dose (concentration) of chemotherapy. We assume

in this model that its effect is cytotoxic, i.e., on the death term only.
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IDE model, mutations, one cytotoxic drug: illustrations (1)
[Sensitive cell population case: illustration of Gause’s exclusion principle]
Theorem: Monomorphic evolution towards drug sensitivity, illustrated here with
θH = 0, (no mutations) and µH = 0 (no drug-induced resistance)

Left panel: starting from a medium phenotype x = 0.5, level sets of a drug-sensitive
population in the (t, x) plane. Right panel: asymptotic distribution of this
drug-sensitive population according to the drug resistance phenotype x .

(Lorz et al., M2AN 2013)
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IDE model, mutations, cytotoxic drug: illustrations (2)
[Resistant cell population case: Gause’s exclusion principle again]
Theorem: Monomorphic evolution towards drug-induced drug resistance, here with
θC = 0, µC (·) > 0, r ′(·) < 0, µ′C (·) < 0 (costly drug-induced resistance)

Left panel: starting from a medium phenotype x = 0.5, level sets of a drug- resistant
population in the (t, x) plane. Right panel: asymptotic distribution of this
drug-resistant population according to the drug resistance phenotype x .

(Lorz et al., M2AN 2013)
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2nd IDE model, 2 drugs, cytotoxic u1(t), cytostatic u2(t),
bidimensional resistance phenotype (x , y), no mutations

∂

∂t
nC (x , y , t) =

[
rC (x , y)

1 + ku2(t)
− dC (x , y)IC (t)− u1(t)µC (x , y)

]
nC (x , y , t)

Environment: IC (t) = α
∫ 1
0
∫ 1
0 nC (x , y , t) dx dy + β

∫ 1
0
∫ 1
0 nH(x , y , t) dx dy

Sensitive cell population case:

Convergence toward total sensitivity

Resistant cell population case:

Convergence toward 2 resistant phenotypes

(Tommaso Lorenzi, work underway)
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Now 2 drugs with one (scalar) resistance phenotype x
∂

∂t
nH(x , t) =

[
rH(x)

1 + kHu2(t)
− dH(x)IH(t)− u1(t)µH(x)

]
nH(x , t)

∂

∂t
nC (x , t) =

[
rC (x)

1 + kCu2(t)
− dC (x)IC (t)− u1(t)µC (x)

]
nC (x , t)

Environment: IH(t) = aHH .ρH(t) + aHC .ρC (t), IC (t) = aCH .ρH(t) + aCC .ρC (t),

with ρH(t) =
∫ 1
0 nH(x , t) dx , ρC (t) =

∫ 1
0 nC (x , t) dx .

Simultaneous combinations of the 2 drugs, with increasing equal doses

Healthy cells: preserved Cancer cells: eventually extinct

(“Pedestrian’s optimisation”)
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Optimisation algorithms to improve drug delivery in cancer
cell populations (work by Emmanuel Trélat, LJLL, UPMC)

Same phenotype-structured model, but instead of a ‘pedestrian’s optimisation’ (i.e.,
merely using grids), solving an optimal control problem: determining control functions
u1 and u2 in L∞(0,T ), satisfying the constraints

0 ≤ u1(t) ≤ umax
1 , 0 ≤ u2(t) ≤ umax

2 , (1)

and minimising the cost functional

CT (u1, u2) =

∫ 1

0
nC (x ,T ) dx + γ1

∫ T

0
u1(t) dt + γ2

∫ T

0
u2(t) dt, (2)

where (nC (·, ·), nH(·, ·)) is the unique solution of the system of PDEs corresponding to
the controls u1 and u2, such that nH(0, ·) = n0H(·) and nC (0, ·) = n0C (·) and where the
trajectory t 7→ (nC (·, t), nH(·, t)) is subject to the dynamic state constraint

ρH(t)

ρH(t) + ρC (t)
≥ θ. (3)

(here θ = 0.4) We use a direct approach, discretising the whole problem and then

solving the resulting constrained optimisation problem with AMPL (automatic

differentiation) combined with IPOPT (expert optimisation routine)
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Numerical solution to this first optimisation problem

Distribution of populations according to phenotype (black: initial; red: final; blue:
intermediate steps of the optimisation algorithm)

Left and centre panels: optimal drug flows for u1(t) (cytotoxic) and u2(t) (cytostatic)

Right panel: satisfaction of dynamic constraint
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Introducing ‘adaptive therapy’, following Robert Gatenby

• Principle: keep alive an objective ally in
the enemy place

• Relies on competition for resources
between resistant (weakly proliferative)
and sensitive cancer cells in the tumour

• Aim: avoid extinction of sensitive tumour
cells, that are able to outcompete
resistant tumour cells provided that not
too high doses of a drug are delivered

• Method: deliver relatively low doses of
the drug to prevent thriving of too many
sensitive cells and limit emergence of too
many (unbeatable) resistant cells

• Objective: controlling total (sensitive +
resistant) tumour cell population

• Caveat: not necessarily applicable in the
case of fast growing tumours (e.g., acute
myeloblastic leukaemia)
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Second optimisation problem, same IDE model (1)
Environment: IH(t) = aHH .ρH(t) + aHC .ρC (t), IC (t) = aCH .ρH(t) + aCC .ρC (t),

with ρH(t) =
∫ 1
0 nH(x , t) dx , ρC (t) =

∫ 1
0 nC (x , t) dx .

Same IDE model with evolution in phenotype x due to effects of cytotoxic drug u1(t)

∂

∂t
nH(x , t) =

(
rH(x)

1 + αHu2(t)
− dH(x)IH(t)− u1(t)µH(x)

)
nH(x , t)

∂

∂t
nC (x , t) =

(
rC (x)

1 + αCu2(t)
− dC (x)IC (t)− u1(t)µC (x)

)
nC (x , t)

0 ≤ u1(t) ≤ umax
1 , 0 ≤ u2(t) ≤ umax

2

minCT (u1, u2) = ρC (T ) =

∫ 1

0
nC (x ,T ) dx

under the additional constraints
ρH(t)

ρH(t) + ρC (t)
≥ θH , ρH(t) ≥ ρH(0)
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Second optimisation problem, same model (2)

Furthermore, we add the “adaptive” constraint

ρCS (t)

ρC (t)
≥ θCS , where

ρCS (t) =

∫ 1

0
(1− x)nC (t, x) dx

may be seen as the total number at time t of tumour cells that are sensitive, and

ρCR(t) =

∫ 1

0
xnC (t, x) dx

as the total number at time t of tumour cells that are resistant.

Of course, sensitivity/resistance being by construction a non-binary variable, the
weights x and 1− x are here to stress in a simple way a partition between a sensitive
class and a resistant class in the cancer cell population; other choices with
ρC (t) = ρCS (t) + ρCR(t) might be made for these weights, e.g., x2 and 1− x2, .
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Second optimal control problem: theoretical results

Theorem
Under these conditions, the optimal trajectory in large time T > 0 consists of 3 arcs:

1. A first transient short-time arc, consisting of reaching the boundary
ρH (t)

ρH (t)+ρC (t)
= θH , with u1 = 0 and with an appropriate control u2.

2. A middle long-time arc: u1 = 0, u2 ' Cst, this constant being tuned so that

ρH(t)

ρH(t) + ρC (t)
= θH .

At the end of this long-time arc, we have

nH(·, t) ' δx∞
H
, nC (·, t) ' δx∞

C
(δx∞

[H,C ]
Dirac masses)

i.e., healthy and tumour cells have concentrated at some given respective
phenotypes x∞H and x∞C .

3. A last transient short-time arc: u1 = umax
1 , u2 = umax

2 , along which the
population of healthy and of tumour cells is very quickly decreasing.
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Simulations illustrating this theorem

Simulation with T = 30

(optimisation using
AMPL-IPOPT)
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Interpretation

Neglecting the first transient arc, in a first approximation the optimal trajectory is
made of two parts, the first one with u1 = 0 and the second one with u1 = umax

1 .

Main idea:
1. Let the system naturally evolve to a phenotype concentration (long-time phase).

2. Then, apply the maximal quantity of drugs, during a short-time phase, in order
to eradicate as many tumour cells as possible.

The second short-time phase is all the more efficient as the phenotypes are
concentrated (hence, as the time T is large).

The proof of the theorem relies on two main facts.
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First fact: asymptotic behaviour

Lemma
Assume that u1 = Cst = ū1 and that u2(t) = Cst = ū2. Then, ∀(nH(·, 0), nC (·, 0))

nH(·, t) −→
t→+∞

δx∞
H
, nC (·, t) −→

t→+∞
δx∞

C
,

i.e., healthy and tumour cells concentrate at some given respective phenotypes x∞H
and x∞C (which can be characterised and computed).

Proof.
We show that (ρH(t), ρC (t)) satisfies integral inequalities with at each bound the
solutions of a coupled system of (non-explosive) Riccati equations

ż1(t) = z1(t)(a1 − b11z1(t)− b12z2(t))

ż2(t) = z2(t)(a2 − b22z2(t)− b21z1(t)).

with nonnegative constant coefficients. This implies their convergence. The
concentration follows from the exponential behaviour of nH(·, t) and nC (·, t).
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Second fact: an alternative optimal control problem

Lemma
Consider the following optimal control problem on the short-time interval [t1,T ]:

Find the best possible distribution nC (·, t1) such that, applying along
[t1,T ] the maximal quantity of drugs, we minimise the quantity ρC (T ).

The answer is a Dirac mass:
nC (·, t1) = δx∞

C
.

This lemma implies that, in order to kill as many tumour cells as possible, the drugs
are most efficient when the tumour cells are concentrated on a given phenotype.

These two facts, combined with other remarks (showing for instance that T must be

large, that the controls must be almost constant, etc.), allow to prove the theorem.
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Comparison with “almost periodic” curative strategies

On the right: drugs given
almost periodically, within
T = 60.
→ Far less efficient!!

ρC (T ) ' 0.03

whereas using the previous
strategy we had

ρC (T ) ' 10−6

(optimisation using
AMPL-IPOPT)
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Limitations of this optimisation procedure, owing to the fact
that the trait represents resistance to only one drug

• The model assumes one trait of resistance corresponding to one cytotoxic drug.

• However, overcoming resistance using this strategy may not be successful if too
many types of resistance coexist, due to high phenotype heterogeneity.

• Phenotype heterogeneity within the tumour may thus reduce such strategy to
nothing, unless a multidimensional phenotype may be considered.

• ... Unless also one could act very early to avoid the development of transient
drug-resistant cell clones by epigenetic drugs or metabolism modifying strategies.
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Extension of the IDE model to include a 2D phenotype

• Motivation: to account for biological observations on a reversible drug-resistant
phenotype in cancer cell populations: Sharma et al. 141:69–80, Cell 2010

• Underlying hypothesis: epigenetic modifications affect differently survival and
proliferation potentials in cancer cell populations submitted to high drug doses

• 2 proposed traits: x , stress survival potential (∼ apoptosis inhibition?) and y ,
proliferation potential (∼ cell division cycle enhancement?), both reversible

• An agent-based (AB) model shows the same behaviour for the cancer cell
population
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Sum-up of the Sharma et al. paper

• Population of PC9 (NSCLC) cells under high doses of drugs (e.g., gefitinib)
• 99.7% cells die, .3% survive in this maintained hostile drug environment: DTPs
• In the same hostile environment, 20% of DTPs resume proliferation: DTEPs
• Total reversibility to drug sensitivity is obtained by drug withdrawal, occurring

after 9 doubling times for DTPs, and 90 doubling times for DTEPs
• Inhibition of epigenetic enzyme KDM5A blocks emergence of DTPs
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2D phenotype-structured IDE model

• Initial (PC9) cancer cell population structured by 2 continuous variables:
x ∈ [0, 1]: normalised expression level of survival-potential, and
y ∈ [0, 1]: normalised expression level of proliferation-potential
(both biologically relying on, e.g., levels of methylation in DNA and histones)

• Population density of cells with phenotypic expression (x , y) at time t, n(x , y , t)
satisfies

∂n

∂t
(x , y , t) +

∂

∂y

(
v(x , c(t); v̄)n(x , y , t)

)
︸ ︷︷ ︸
stress-induced adaptation
of the proliferation level

=

[
p(x , y , %(t))− d(x , c(t))

]
n(x , y , t)︸ ︷︷ ︸

selection

+ β∆n(x , y , t).︸ ︷︷ ︸
non-genetic

phenotype instability

• %(t) =
∫ 1
0
∫ 1
0 n(x , y , t) dxdy is the global population density

• No-flux BCs

(Chisholm et al., in revision, 2014)
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AB model and IDE model recover phenotype dynamics
e.g., during drug treatment (PC9s and DTPs present initially)

T is the simulation end-time: 0 ≤ t ≤ T
(Chisholm et al., in revision, 2014)
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AB model and IDE model recover phenotype dynamics
e.g., during drug exposure and after drug withdrawal: total recovery of drug sensitivity
(here only PC9s present initially)

Adaptation is present v < 0

(Chisholm et al., in revision, 2014)
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Use IDE model to address two questions

Q1. What can we expect if the drug dose is low?

Q2. Could genetic-mutations generate similar dynamics?

Consider c(·) = c and two scenarios:

(i) Only PC9s initially, adaptation is present (v < 0)

(ii) PC9s and a few DTPs initially, adaptation is absent (v = 0)
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Q1. What can we expect if the drug dose is low?

Definition (LCγ dose)
The drug dose required to kill γ% of the total cell population, in the initial stage of
drug therapy, before the population starts to recover

• High c: c ≥ LC90 dose
• Low c: c ≤ LC50 dose
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A1. High dose of cytotoxic drugs is necessary for the
transient dominance of DTPs

Adaptation is present v < 0

(Chisholm et al., in revision, 2014)
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A1. High dose of cytotoxic drugs is necessary for the
transient dominance of DTPs

Adaptation is absent v = 0

(Chisholm et al., in revision, 2014)
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Q2. Could genetic mutations generate similar dynamics?

Consider the pure mutation model (no diffusion, no stress-induced adaptation drift)

∂n

∂t
(x , y , t) =

[
(1− α)p(x , y , %(t))− d(x , c(t))

]
n(x , y , t)︸ ︷︷ ︸

birth and death term due to sheer selection

+ α

∫ 1

0

∫ 1

0
p(ξ, η, %(t))M(x , y |ξ, η;σ)n(ξ, η, t)dξ dη,︸ ︷︷ ︸

birth term due to genetic mutations

where the mutation kernel is defined as,

M(x , y |ξ, η;σ) := CMe−
(x−ξ)2
σ e−

(y−η)2
σ ,

and CM is a normalisation constant such that∫ 1

0

∫ 1

0
M(x , y |·, ·; ·)dxdy = 1.
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A2. Genetic mutations cannot generate similar dynamics

• Initially there are DTPs and PC9s.
• G: mutations and selection vs.
• NG: non-genetic instability and selection

(Chisholm et al., in revision, 2014)
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A2. Genetic mutations cannot generate similar dynamics

• Initially there are only PC9s.
• G: mutations and selection vs.
• NG: non-genetic instability, adaptation and selection

(Chisholm et al., in revision, 2014)
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A0. Non-genetic instability is crucial for the emergence of
DTEPs

[Q0. Is non-genetic instability necessary in the development of drug-tolerance?]

Adaptation is present v < 0

(Chisholm et al., in revision, 2014)
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A0. Non-genetic instability is crucial for the emergence of
DTEPs

[Q0. Is non-genetic instability necessary in the development of drug-tolerance?]

Adaptation is absent v = 0

(Chisholm et al., in revision, 2014)
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Notes about the ‘cooking recipes’ used in the simulations (1)

In this version of the simulations (used throughout in the sequel)

rH(x) =
1.5

1 + x2
, rC (x) =

3
1 + x2

,

dH(x) =
1
2

(1− 0.1x), dC (x) =
1
2

(1− 0.3x),

umax
1 = 3.5, umax

2 = 7,

and the initial data are

nH(0, x) = C0 exp(−(x − 0.5)2/ε), nC (0, x) = C0 exp(−(x − 0.5)2/ε),

with ε > 0 small (typically, we will take either ε = 0.1 or ε = 0.01), and where C0 > 0
is such that

ρH(0) + ρC (0) = 1.
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Notes about the ‘cooking recipes’ used in the simulations (2)

The closer to 1 is the variable x , the more resistant are the tumour cells. The choice
done in Lorz et al. 2013 is

µH(x) =
0.2

0.72 + x2
, µC (x) =

0.4
0.72 + x2

.

Note that, with this choice of functions, if we take constant controls u1 and u2, with

u1(t) = Cst = umax
1 = 3.5, u2(t) = Cst = 2,

then we can kill all tumour cells (at least, they decrease exponentially to 0), and no

optimisation is necessary.
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Notes about the ‘cooking recipes’ used in the simulations (3)
The environment variables I[H,C ](t) defined by

IH(t) = aHHρH(t) + aHCρC (t),

IC (t) = aCHρH(t) + aCCρC (t),
(4)

and

ρH(t) =

∫ 1

0
nH(x , t) dx , ρC (t) =

∫ 1

0
nC (x , t) dx .

have been chosen such that

aHH = 1, aCC = 1, aHC = 0.07, aCH = 0.01, αH = 0.01, αC = 1,

which means in particular that in the limiting logistic terms in the model, intraspecific

competition is overwhelmingly higher than interspecific competition, i.e., cell growth is

mainly limited by access to resources, and very little by frontal competition between

cancer and healthy cells, a choice done on biological grounds (cancer cells and healthy

cells are not thriving on the same metabolic niche, e.g., aerobic vs. glycolytic

metabolisms). As a consequence, as in classical Lotka-Volterra models with

competition, the choice of these parameters will lead in the simulations to asymptotic

coexistence of the two species, healthy and cancer, in a non trivial equilibrium state.
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1st IDE model, asymptotic behaviour, details on the proof:
convergence

Assume that u1 = Cst = ū1, and that u2(t) = Cst = ū2. Then, for any initial
population of healthy and of tumour cells, (ρH(t), ρC (t)) converges to the equilibrium
point (ρ∞H , ρ∞C ), which can be exactly computed as follows.
Let a1 ≥ 0 and a2 ≥ 0 be the smallest nonnegative real numbers such that

rH(x)

1 + αH ū2
− ū1µH(x) ≤ dH(x)a1 and

rC (x)

1 + αC ū2
− ū1µC (x) ≤ dC (x)a2. (1)

Then (ρ∞H , ρ∞C ) is the unique solution of the system (invertible as a consequence of the
fact that intraspecific competition is assumed higher than interspecific competition)

aHHρ
∞
H + aHCρ

∞
C = a1,

aCHρ
∞
H + aCCρ

∞
C = a2.

Furthermore, if AH ⊂ [0, 1] (resp., AC ⊂ [0, 1]) is the set of all points such that
equalities hold in (1), then the supports of the probability measures
νH(t) = nH (x,t)

ρH (t)
dx and νC (t) = nC (x,t)

ρC (t)
dx converge respectively to AH and AC . In

particular, if AH is reduced to a singleton x∞H , and if AC is reduced to a singleton x∞C
(cases of our simulations), then νH(t) and νC (t) converge for the vague topology
respectively to the Dirac masses δx∞

H
and δx∞

C
for some x∞H ∈ [0, 1] and x∞C ∈ [0, 1]

as t tends to +∞.
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Asymptotic behaviour, other details : concentration on x∞[H,C ]

Indeed, by integration, we have

nH(x , t) = n0H(x) exp
((

rH(x)

1 + αH ū2
− ū1µH(x)

)
t

− dH(x)

(
aHH

∫ t

0
ρH(s) ds + aHC

∫ t

0
ρC (s) ds

))
,

nC (x , t) = n0C (x) exp
((

rC (x)

1 + αC ū2
− ū1µC (x)

)
t

− dC (x)

(
aCH

∫ t

0
ρH(s) ds + aCC

∫ t

0
ρC (s) ds

))
.

Then, since for large t, we have
∫ t
0 ρH(s) ds ∼ ρ∞H t and

∫ t
0 ρC (s) ds ∼ ρ∞C t, the

asymptotic behaviour of nH(x , t) and of nC (x , t) depends on the functions

bH(x) =
rH(x)

1 + αH ū2
− ū1µH(x)− dH(x)(aHHρ

∞
H + aHCρ

∞
C ),

bC (x) =
rC (x)

1 + αC ū2
− ū1µC (x)− dC (x)(aCHρ

∞
H + aCCρ

∞
C ),

whose maxima on [0, 1] may be shown to be both zero, with the choices made for the

coefficients a[H,C ][H,C ]. The points at which these maxima are attained (AH and AC ,

generically singletons x∞H and x∞C ) are the supports of the announced Dirac masses.
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Second fact: an alternative optimal control problem

Lemma
Consider the following optimal control problem on the short-time interval [t1,T ]:

Find the best possible distribution nC (·, t1) such that, applying along
[t1,T ] the maximal quantity of drugs, we minimise the quantity ρC (T ).

The answer is a Dirac mass:
nC (·, t1) = δx∞

C
.

This lemma implies that, in order to kill as many tumour cells as possible, the drugs
are most efficient when the tumour cells are concentrated on a given phenotype.

These two facts, combined with other remarks (showing for instance that T must be

large, that the controls must be almost constant, etc.), allow to prove the theorem.
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What could be models of cancer cell population dynamics
identifiable from genome samples in single cells?

We need several modules (not all of them presently at hand) to design such a model:
• A (time) dynamic deterministic structured model of cell population behaviour

with phenotype variability and evolutionary (relevant trait) dynamics; we have
experience of such PDE models: transport, reaction-diffusion, integro-differential

• Intracellular molecular deterministic models for the concentration of relevant
mRNAs and proteins to determine cell fates, e.g., of nodal antagonist pairs X,Y
such as transcription factors PU.1/GATA1 for the choice of myeloid vs.
erythroid lineages in HSCs: relatively easy to design and classic by sets of ODEs

• For each antagonism, a stochastic process Z at the gene expression level, where
would lie the (epigenetic?? TET2, etc.) source of phenotypic heterogeneity,
randomly determining ODE parameters and whose parameters would themselves
depend on tissue environment variables; prototypes by Mackey and Yvinec

• Upscaling principles to integrate models from cell ODEs to tissue physiologically
structured PDEs, making phenotype signatures from single cell genome samples

• Environment variables would result from integration, at the tissue level, of such
“readouts” from single cell characteristics; their concentrations would determine
phenotypes in cell populations; see e.g., Friedman et al. J Diff Eq 2009, 2012
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From local to global, and back: a metaphor from geophysics

• At the planet level, albedo ratio: reflection (cooling) vs. refraction (warming) of
sunbeams on ice crust vs. ocean water, plus greenhouse effect (warming)

• At the most elementary level (here simplified): H2O + CO2 � H+ + HCO−3 ,
i.e., CO2 emission (greenhouse warming) vs. CO2 sequestration (cooling)

• Environment variable, from global to local: temperature (of the reaction)

• Global cooling: state of the Earth 650 million years ago (“Snowball Earth”)

• NB: Stable equilibrium? (M. Budyko)... yes, but only if one does not take into
account volcanic activity, that can pierce the ice crust and release enormous
quantities of gases (CO2,CH4), contributing to re-establishing the greenhouse
effect, which actually happened (ice melt -635 My?) and led to the Cambrian
multicellular explosion about 540 million years ago, from which we were begotten
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Illustrations from Graf & Enver, Nature 2009

[Classic Waddington landscape]

Stem cell fate: modern version by Tariq Enver
Zoom on the PU.1/GATA1 node



Biological background Drug resistance Integro-differential models Optimisation Extensions [Long-term prospects]

Sketched candidate model for 2 antagonistic genes X, Y
• Stochastic process Z to represent regulator gene expression (epigenetic? TET2?)
• ODEs (or possibly intracellular reaction-diffusion PDEs) for mRNA expression of

antagonistic genes X ,Y and for resulting synthesised proteins x , y
• Environment (=tissue) signal production by integration of intracellular protein

concentrations x and y (or of their extracellular outputs),
• Extracellular signals σ and τ (possibly controlled by therapeutic molecules u1(t),

u2(t)) go to the nucleus to control stochastic expression of regulator gene Z

• Dynamics of cell population density ϕ(X ,Y ,Z , t), structured in traits X ,Y ,Z

∂ϕ

∂t
+

∂

∂X

(
ϕ
dx

dt

)
+

∂

∂Y
(ϕ

dy

dt
) + LZϕ = R.ϕ
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Possible candidate equations for the dynamics of the model
- Z stochastic process controlled by σ(t), τ(t), u1(t), u2(t), with outputs on transcription v(Z),w(Z) for
bursting frequency (Va = Va0 .v(Z),Wa = Wa0 .w(Z): effects on launching transcription), and f (Z), g(Z)
amplification terms representing bursting magnitude (mRNA concentrations Xf (Z) and Yf (Z) in RHS
representing bursting amplitude as seen on transcriptional effects on protein concentrations x, y) and

LZϕ = −λ(σ, τ, Z)ϕ(t, X , Y , Z) +

∫ Z

0
λ(σ, τ, ζ)ϕ(t, X , Y , ζ)κ(ζ, Z) dζ +

∂

∂Z
(−θZϕ)

- X , Y : zero-order ultrasensitivity switches representing bursting of transcription in genes X and Y

(0 ≤ X , Y ≤ 1), with Va
Vi

and Wa
Wi

around threshold 1 ( Va
Vi

or Wa
Wi

> 1: gene on; Va
Vi

or Wa
Wi

< 1: gene

off, with steep switch):

dX

dt
= Va.

1− X

Ja + 1− X
− Vi .

X

Ji + X
,

dY

dt
= Wa.

1− Y

Ka + 1− Y
−Wi .

Y

Ki + Y

- x, y : intracellular protein concentrations with mutual inhibition of synthesis:

dx

dt
= −µx +

α1x
n

k1 + xn
.

1

1 + y
γ1

+ Xf (Z),
dy

dt
= −νx +

α2y
n

k2 + yn
.

1

1 + x
γ2

+ Yg(Z)

- σ, τ : tissue signalling (including therapeutic control) obtained by extracellular efflux of proteins x and
y and their integration at the cell population level:

σ(t) =
u1(t) +

∫ ∫
xϕ(t, X , Y ) dX dY∫ ∫

ϕ(t, X , Y ) dX dY
, τ(t) =

u2(t) +
∫ ∫

yϕ(t, X , Y ) dX dY∫ ∫
ϕ(t, X , Y ) dX dY
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Therapeutic means of action u1(t), u2(t) to be optimised

• Classical drugs acting on proliferation: with mechanisms more or less known at
the individual cell level (cytotoxic, cytostatic, redifferentiating agents) or at the
tissue level (antiangiogenic, supporting tissue modifiers)

• “Epigenetic” drugs acting on DNA methylation by tissue metabolism
modifications or on histone acetylation (HDAC inhibitors): mechanisms not well
known, nor sufficiently clinically assessed thus far, but clinical essays underway

• IPS therapies? Dedifferentiating cancer cells (using Yamanaka’s 4 genes
Oct3/Oct4, SOX2, KLF4 and c-myc, plus NANOG or other), then need to guide
(= control) redifferentiation from induced pluripotent stem cells to normal cells

• Possible pitfalls of IPS therapies (i.e., designing guidelines to establish
constraints for optimal control): non viability, non mastered proliferation,
remnants of initial cell phenotypes in IPS cells, errors at nodes in going down
phylogenetic trees...

• Objectives in optimal control strategies: targeting phenotypic signatures
characteristic (“phylognomonic”) of the desired cell population phenotypes
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