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Motivation

K.Swanson et al., Virtual and real brain tumors: using mathematical
modeling to quantify glioma growth and invasion, 2003
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Usual Actors in Mathematical Cancer Modelling

• c(x , t) or c(t) the density of cancer cells ,

• n(x , t) or n(t) the density of normal cells,

• h(x , t) or h(t) the concentration of the drug
(in dependence on the position and time or only time)

Usual optimization aim: To minimize c
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What is in Fact Important?

To keep the patient alive for a maximal long period

of time!

To define the Viable Domain V :

c 6 c∗, n > n∗, h 6 h∗.

and for the total amount of the drug 6 Q.
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Possible Strategy

n

h
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To find cyclic (or quasi cyclic) trajectories in domain V means potential

possibility to control the illness applying a regular treatment therapy
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Statement of the Control Problem

To find such therapy strategy from some set S

which maximizes the total response time of trajectory of the
system in the viable domain

TV −→ max

provided realization of the restriction on total amount of the
drug (or maximal concentration)
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The Control Problem Considered

R.Gatenby, A change of strategy in the war on cancer, Nature, 2009
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Consider a usual ODE-Model for Cancer

dc(t)
dt

= f1(c(t))− k1c(t)g(h),
dn(t)
dt

= f2(n(t))− k2n(t)g(h)− l1ϕ(c , n),
dh(t)
dt

= −γhh(t)− (ε1c(t) + ε2n(t))h(t) + u(t).

with the initial conditions

c(0) = c0, n(0) = n0, h(0) = h0;

and the constraint
TV
∫

0

h(t) dt 6 Q.
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An Almost Periodical Treatment Strategy in the Case of the

ODE-Model

Рис. : An ’almost periodical’ strategy with a small declination in

c = ln c. k1 = 0.105; k2 = 0.054; q = 0.07; τ1 = 3.4; τ2 = 12.
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Description of the Model

• Let D ⊂ R
m, m = 2, 3, t > 0 be a bounded domain of area (or volume) S with

a smooth boundary Γ, ν be the outer normal unit vector to Γ,

• c(x , t) denotes the density of cancer cells,

• n(x , t) denotes the density of normal cells,

• h(x , t) denotes the concentration of the drug in dependence of the position and
time, respectively,

•

dc (x) =

{

dg , if x belongs to grey matter,
dw , if x belongs to white matter

with dg , dw ∈ R
>0 denotes the diffusion coefficient of cancer cells

• dn, dh are the diffusion coefficients of normal cells and the medicine, respectively,

• γh is the dissipation rate of the therapeutic agent
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Mathematical Model of Glioma

∂c(x,t)
∂t

= f1(c(x , t)) +∇ (dc(x)∇c(x , t))− k1c(x , t)g(h),
∂n(x,t)

∂t
= f2(n(x , t)) + dn∆n(x , t) − k2n(x , t)g(h)− αϕ(c , n),

∂h(x,t)
∂t

= −γhh(x , t) + dh∆h(x , t) + u(x , t).

Initial Conditions:

c(x , 0) = c0(x) > 0, n(x , 0) = n0(x), h(x , 0) = h0(x);

Boundary Conditions:

∂c(x , t)

∂ν

∣

∣

∣

∣

Γ

= 0,
∂n(x , t)

∂ν

∣

∣

∣

∣

Γ

= 0,
∂h(x , t)

∂ν

∣

∣

∣

∣

Γ

= 0;
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Possible Descriptions of Proliferation Laws

• The Gompertz’s Law:

fi (v) = ρiv(1 − βi ln v), v > 0

f
i
(v)

• The Logistic Law:

fi (v) = ρiv(1 − βiv), v > 0

v

f
i
(v)
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Description of the Therapy, Damage and Competition

Functions

• The Therapy Function for Cancer Cells and the Damage
Function to Normal Cells:

g(h) =
h

a0 + h
, a0 > 0

• The Competition Function:

ϕ(c , h) =
cn

b0 + c
, b0 > 0
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Values of Parameters of the Model Considered

parameter notation value

diffusion of cancer cells dg 1.3 × 10−3 cm2/day
diffusion of cancer cells dw 5 × 10−3 cm2/day
diffusion of drug dh 0.386 × 10−2 cm2/day
diffusion of normal cells dn 1.0 × 10−3 cm2/day
drug dissipation γh 0.0347

proliferation of cancer cells ρ1 0.012 day−1

saturation of cancer cells β1 0.0819

proliferation of normal cells ρ2 0.006 day−1

saturation of normal cells β2 0.0869
cancer domain area SD 6 × 6 cm2
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Definition of the Viable Domain

n(t) =

∫

D

ln n(x , t) dx , c(t) =

∫

D

ln c(x , t) dx . (1)

c∗ > 0 denotes the restriction on the total number of malignant cells
(upper limit),
n∗ > 0 the restriction on the total number of normal cells (lower limit)

Definition

If the solutions n(x , t), c(x , t) of the PDE system considered satisfy for
all t the following integral inequalities:

n(t) > n∗, c(t) 6 c∗. (2)

then we say that the numbers of malignant and normal cells are in the
viable domain V bounded by the parameters n∗ and c∗.
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The Class of Simple Therapy Strategies

Definition

Let D0 ⊆ D, q > 0, τ1 > 0, τ2 > 0. We will say that a control function
u(x , t) belongs to the class of simple therapy strategies (S) if it has the
form

u(x , t) = χ(x)u0(t),

where

u0(t) =

{

q, 0 6 t 6 τ1;
0, τ1 6 t 6 τ1 + τ2;

χ(x) =

{

1, x ∈ D0;
0, x /∈ D0;

u
0
(t)

t

q

0
τ
1

τ
1
+τ

2 2τ
1
+τ

2 2τ
1
+2τ

2
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Statement of the Control Problem

To find the control function u(x , t) in the class of simple tharapy
strategies such that response time T in the viable domain V

bounded by the parameters n∗ and c∗ (survival time) will be
maximal under the restriction on cumulative amount of
chemotherapeutic agent during the whole therapy process:

T
∫

0

∫

D

h(x , t) dx 6 Q. (3)

where Q > 0
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Existence of Viable Therapy Strategies

Let C(t) and N(t) be positive functions defined by

C(t) :=
σc

ρ1β1

(

1 − e−ρ1β1t
)

+e−ρ1β1tc(0), N(t) :=
σn

ρ2β2

(

1 − e−ρ2β2t
)

+e−ρ2β2tn(0)

where σc , σn, ρ1, β1, ρ2, β2, c(0), n(0) some positive constants which can be found

from the PDE-system considered.

1 If for some t > 0 and some c∗ > 0 the inequality C (t) > c∗ takes
place then there is no treatment strategy u(x , t) ∈ Σ that can
supply the fulfillment of the viable restriction c(t) 6 c∗.

2 If for any t > 0 and some n∗ > 0 the inequality N(t) > n∗ takes
place then for any treatment strategy from the set Σ the viable
restriction n(t) > n∗ is fulfilled.
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Explanation of the Property of Inertion

In the case of ODE with

u(t) =

{

q, 0 6 t 6 τ1, τ1 > 0

0, τ1 6 t 6 τ1 + τ2, τ2 > 0

we have

t

h(t
)

h(t)

τ
1

τ
1
+τ

2
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Correction of the Viable Domain due to the Property of

Inertion

ln c

h
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Search τ2
τ1

. Q =
∫

D

T
∫

0

h(x , t) dx 6 500; k2

k1

= 0.5, α = 0,

q = 0.002.
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Search α. k2

k1

= 0.5, τ1 = 30, τ2 = 90, q = 0.002.
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For q = 0.002 the optimal ratio is τ2
τ1

= 2.6

τ1 be the time during that u = q takes place (’active control time’) and

τ2 be the ’passive control time’ ( i.e. with u = 0)
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Рис. : For every q the maximum viable time is T (q) (on the right fig.)
and it is reached with τ2

τ1

(q) (on the left fig.)
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Optimal value τ1 = 2, τ2 = 5.2 (τ2
τ1

= 2.6) for q = 0.002
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Рис. : For every τ1 the maximum viable time is T (τ1) (on the left fig.)
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Existence of Periodical Treatment Strategy Outside of the

Viable Domain

140 150 160 170 180 190 200 210
200

220

240

260

280

300

320

340

360

380

400

 ∫
D

 ln c(x,t) dx

∫ D
 ln

 n
(x

,t)
 d

x



On Viable Therapy Strategy for a Mathematical Spatial Cancer Model Describing the Dynamics of the Malignant and Healthy

Bibliography

Bratus A.S., Fimmel E., Kovalenko S.

On assessing quality of therapy in non-linear distributed mathematical models for brain tumor
growth dynamics, Mathematical Biosciences 248C (2014), pp. 88-96

J.-P.Aubin

Nonlinear analysis and its economical applications.//Masson, Paris, 1984.

A. S. Bratus’, S. Yu. Zaychik

Smooth Solutions of the Hamilton-Jacobi-Bellman Equation in a Mathematical Model of Optimal
Treatment of Viral Infections // Differential Equations, 2010, Vol. 46, No. 11, pp. 1-13.

A. S. Bratus’, E. S. Chumerina

Synthesis of Optimal Control in the task of the selection of drug impact for growth tumour. //
Computational Mathematics and Mathematical Physics, 2008.- Vol. 48, No. 6., pp. 946-966.

D. Murray.

Mathematical Biology, Vol. 2: Spatial Models and Biomedical Applications. Springer, 3. Edition

K. R. Swanson, E. C. Alvord Jr., J. D. Murray.

Virtual Resection of Gliomas: Effect of Extent of Resection on Recurrence// Mathematical and
Computer Modelling, 37(11):1177-1190, 2003

Victor M. Perez-Garcia, Gabriel F. Calvo, Juan Belmonte-Beitia, David Diego, Luis

Perez-Romasanta.

Bright Solitary Waves in Malignant Gliomas. // Phys. Rev. E 84, 021921, 2011.

M. R. Chicoine, D. L. Silbergeld.

Assessment of brain tumour cell motility in vivo and in vitro. //J. Newrosurgery, 82:615-622,
1995 Bulletin of Mathematical Biology (2000) Volume: 62, Issue: 3, Pages: 527-542


