Персонализированные модели высокого разрешения для биоимпедансных измерений

Александр Данилов, Александра Юрова, Василий Крамаренко

Институт вычислительной математики РАН МГУ им. М. В. Ломоносова, МФТИ

29 октября 2013

Александр Данилов (ИВМ РАН)

Персональные модели БИА

29.10.2013 1 / 21

Биоимпедансные измерения

- Импедансная томография/кардиография
- Биоимпедансый анализ (БИА) состава тела

- Измеряется величина импеданса для нескольких частот
- Локальные, сегментные и полисегментные схемы
- Оценивается гидратация, безжировая, активная клеточная, скелетно-мышечная масса и др.

(日) (同) (三) (三)

Неинвазивность, оперативность, портативность, простота и удобство

Николаев Д.В. и соавт. Биоимпедансный анализ состава тела человека. М.: Наука, 2009. 392с.

Математическая модель

$$\operatorname{div}(\mathbf{C}
abla U) = 0$$
 в Ω
 $\mathbf{J}_n = \pm I/S_{\pm}$ на Γ_{\pm}
 $\mathbf{J}_n = 0$ на $\partial \Omega \setminus \Gamma_{\pm}$

U – потенциал электрического поля

- С тензор удельной проводимости
- $\mathbf{E} =
 abla U$ напряжённость поля
- $\mathbf{J} = \mathbf{C} \, \mathbf{E}$ плотность тока
- I зондирующий ток
- S_\pm площадь контакта электродов

イロト 不得下 イヨト イヨト 二日

Р1 МКЭ (AniFEM из Ani3D)

Проводимость некоторых тканей на частоте 50 кГц (См/м)

Кровь	0.7	+	0.02· <i>i</i>
Мышцы	0.36	+	0.035 <i>·i</i>
Жир	0.0435	+	0.001 <i>·i</i>
Кость	0.021	+	0.001 <i>·i</i>
Кожа	0.03	+	0.06· <i>i</i>
Сердце	0.19	+	0.045 <i>·i</i>
Лёгкое	0.27	+	0.025 <i>·i</i>

Gabriel S., Lau R.W., Gabriel C. The dielectric properties of biological tissue: III. Parametric models for the dielectric spectrum of tissues. // Phys.Med.Biol. 1996. V.41(11). P.2271-2293.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

$$\operatorname{div}(\mathbf{C}\nabla U) = 0$$

$$\mathbf{C} = \mathbf{C}_R + i \cdot \mathbf{C}_I, \quad U = U_R + i \cdot U_I,$$

$$\begin{cases} \operatorname{div}(\mathbf{C}_R \nabla U_R) - \operatorname{div}(\mathbf{C}_I \nabla U_I) = 0\\ \operatorname{div}(\mathbf{C}_R \nabla U_I) + \operatorname{div}(\mathbf{C}_I \nabla U_R) = 0 \end{cases}$$

$$\begin{pmatrix} A_R & -A_I \\ A_I & A_R \end{pmatrix} \begin{pmatrix} x_R \\ x_I \end{pmatrix} = \begin{pmatrix} b_R \\ b_I \end{pmatrix}$$

P1 MKЭ (AniFEM, пакет Ani3D, sf.net/projects/ani3d)

Александр Данилов (ИВМ РАН)

Персональные модели БИА

29.10.2013 5 / 21

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

 $\operatorname{div}(\mathbf{C}\nabla U)=0$

$$\mathbf{C} = \mathbf{C}_R + i \cdot \mathbf{C}_I, \quad U = U_R + i \cdot U_I,$$

$$\begin{cases} \operatorname{div}(\mathbf{C}_R \nabla U_R) - \operatorname{div}(\mathbf{C}_I \nabla U_I) = 0\\ \operatorname{div}(\mathbf{C}_R \nabla U_I) + \operatorname{div}(\mathbf{C}_I \nabla U_R) = 0 \end{cases}$$

$$\begin{pmatrix} A_R & -A_I \\ A_I & A_R \end{pmatrix} \begin{pmatrix} x_R \\ x_I \end{pmatrix} = \begin{pmatrix} b_R \\ b_I \end{pmatrix}$$

P1 MKЭ (AniFEM, пакет Ani3D, sf.net/projects/ani3d)

Александр Данилов (ИВМ РАН)

Персональные модели БИА

29.10.2013 5 / 21

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

$$\operatorname{div}(\mathbf{C}\nabla U) = \mathbf{0}$$

$$\mathbf{C} = \mathbf{C}_R + i \cdot \mathbf{C}_I, \quad U = U_R + i \cdot U_I,$$

$$\begin{cases} \operatorname{div}(\mathbf{C}_R \nabla U_R) - \operatorname{div}(\mathbf{C}_I \nabla U_I) = 0\\ \operatorname{div}(\mathbf{C}_R \nabla U_I) + \operatorname{div}(\mathbf{C}_I \nabla U_R) = 0 \end{cases}$$

$$\begin{pmatrix} A_R & -A_I \\ A_I & A_R \end{pmatrix} \begin{pmatrix} x_R \\ x_I \end{pmatrix} = \begin{pmatrix} b_R \\ b_I \end{pmatrix}$$

P1 MK3 (AniFEM, пакет Ani3D, sf.net/projects/ani3d)

Александр Данилов (ИВМ РАН)

Персональные модели БИА

29.10.2013 5 / 21

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

$$\operatorname{div}(\mathbf{C}\nabla U) = 0$$

$$\mathbf{C} = \mathbf{C}_R + i \cdot \mathbf{C}_I, \quad U = U_R + i \cdot U_I,$$

$$\begin{cases} \operatorname{div}(\mathbf{C}_R \nabla U_R) - \operatorname{div}(\mathbf{C}_I \nabla U_I) = 0\\ \operatorname{div}(\mathbf{C}_R \nabla U_I) + \operatorname{div}(\mathbf{C}_I \nabla U_R) = 0 \end{cases}$$

$$\begin{pmatrix} A_R & -A_I \\ A_I & A_R \end{pmatrix} \begin{pmatrix} x_R \\ x_I \end{pmatrix} = \begin{pmatrix} b_R \\ b_I \end{pmatrix}$$

P1 MK3 (AniFEM, пакет Ani3D, sf.net/projects/ani3d)

<ロ> (四) (四) (三) (三) (三) (三)

Где найти геометрическую модель?!

Plasticboy Anatomy Models (www.plasticboy.co.uk)

- Разработаны для визуализации
- 2 Неконформные сетки
- Пустые пространства внутри тела
- Требует значительной пост-обработки

▲ □ ► < □ ► </p>

Где найти геометрическую модель?!

Plasticboy Anatomy Models
(www.plasticboy.co.uk)

- Разработаны для визуализации
- 2 Неконформные сетки
- Пустые пространства внутри тела
- Требует значительной пост-обработки

A (10) F (10)

Где найти геометрическую модель?!

Plasticboy Anatomy Models (www.plasticboy.co.uk)

- Разработаны для визуализации
- 2 Неконформные сетки
- Пустые пространства внутри тела
- Требует значительной пост-обработки

A (1) > A (1) > A

Создадим свою технологическую цепочку

ITK-SNAP

CGAL Mesh

Ani3D

ParaView

A. A. Danilov, D. V. Nikolaev, S. G. Rudnev, V. Yu. Salamatova and Yu. V. Vassilevski, Modelling of bioimpedance measurements: unstructured mesh application to real human anatomy. *Russ. J. Numer. Anal. Math. Modelling* (2012) 27, No 5, 431–440

Александр Данилов (ИВМ РАН)

Персональные модели БИА

29.10.2013 7 / 21

Visible Human Project

Visible Human Project U.S. National Library of Medicine www.nlm.nih.gov/research/visible

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Visible Human Project

Visible Human Project U.S. National Library of Medicine www.nlm.nih.gov/research/visible

ITK-SNAP

ITK-SNAP (www.itksnap.org) Свободное ПО для визуализации и сегментирования

Персональные модели БИА

ITK-SNAP

ITK-SNAP (www.itksnap.org) Свободное ПО для визуализации и сегментирования

rgb.mhd - smooth r4.nii.gz - ITK SNAP 2.2.0 File Segmentation Overlay Tools Layout Help Main Toolbox 83 1 രി ٥ • • **Tool Options** Crosshairs Tool Intensity: Label 29 Label description: P Multisession cursor Segmentation Options zoom to fit 172 of 774 zeem to fit 303 of 573 Active drawing label: -SKIN Draw over E Draw inverted Overall label opacity: 128 Label editor 3D Toolbox accept update mesh Reset view 🔯 😫 🕂 200m to fit 166 of 330

イロト イポト イヨト イヨト

Сегментированная модель туловища

567 \times 305 \times 843 ячеек 1 \times 1 \times 1 \times 1 мм 26 органов и тканей

Всего 146м вокселей, 68м вокселей с материалом

イロト イロト イヨト イヨト

29.10.2013 10 / 21

Неструктурированные тетраэдральные сетки

CGAL Mesh (www.cgal.org) — построение сетки Делоне Ani3D (sf.net/projects/ani3d) — улучшение качества сетки

413508 вершин, 2315329 тетраэдров, 84430 боковых граней

Александр Данилов (ИВМ РАН)

Персональные модели БИА

29.10.2013 11 / 21

Модели тел для Visible Human Project

3.3 – 3.5 млн тетраэдров

Александр Данилов (ИВМ РАН)

Персональные модели БИА

29.10.2013 12 / 21

э

A = A + A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Численное решение

Р1 МКЭ дискретизация с помощью пакета Ani3D (GMRes + ILU2)

Александр Данилов (ИВМ РАН)	Персональные модели БИА	29.10.2013 13 / 2
-----------------------------	-------------------------	-------------------

<ロト < 四ト < 回ト < 回ト < 回ト = 三日

Мониторинг гидратации правого легкого

Александр Данилов (ИВМ РАН)

Персональные модели БИА

≣ ▶ ४ ≣ ▶ ≣ ∽९० 29.10.2013 14 / 21

Поле чувствительности

 \mathbf{J}_{cc} — линии тока для токовых электродов

 $\mathbf{J}_{\mathrm{reci}}$ – линии тока для потенциальных электродов

поле чувствительности $S = \mathbf{J}_{\mathrm{reci}} \cdot \mathbf{J}_{\mathrm{cc}}$ $Z_t = \int_{\Omega} S(x, y, z) \rho(x, y, z) dv$

イロト 不得下 イヨト イヨト

Александр Данилов (ИВМ РАН)

Персональные модели БИА

29.10.2013 15 / 21

э

10-электродная полисегментная схема БИА

Анализ чувствительности

- классическая схема (I_2-I_3, U_2-U_3)
- руки (I₂-I₁, U₂-U₃) и (I₅-I₁, U₅-U₄)
 ноги (I₃-I₂, U₃-U₄) и (I₄-I₅, U₄-U₃)
 туловище (I₅-I₃, U₂-U₄) и (I₅-I₄, U₂-U₃)
 голова (I₁-I₂, U₁-U₅)
 голова+туловище (I₁-I₃, U₁-U₄)

A. A. Danilov, V. K. Kramarenko, D. V. Nikolaev, S. G. Rudnev, V. Yu. Salamatova, A. V. Smirnov and Yu. V. Vassilevski, Sensitivity field distributions for segmental bioelectrical impedance analysis based on real human anatomy. J. Phys.: Conf. Ser. (2013) 434, 012001. doi: 10.1088/1742-6596/434/1/012001.

Создание персонализированных моделей

Первый шаг – антропометрическая адаптация

Простейший вариант адаптации модели

Александр Данилов (ИВМ РАН)

Персональные модели БИА

29.10.2013 17 / 21

Адаптация по контрольным точкам

Reference Labels

Кусочно-аффинное отображение в контрольной плоскости

Александр Данилов (ИВМ РАН)

Персональные модели БИА

Адаптация положения конечностей пациента

Влияние положения рук при полисегментном БИА состава тела

исходная модель

исправленная модель

Александр Данилов (ИВМ РАН)

Персональные модели БИА

29.10.2013 19 / 21

→ ∃ →

- Разработана численная схема моделирования БИА
- Построены высокоразрешающие 3D модели тела человека (сегментация и сетки)
- Показана высокая чувствительность результатов измерений в интересующих участках тела для стандартных методик
- Разработаны методы адаптации геометрической модели для конкретных пациентов и новых методик

・ 同 ト ・ ヨ ト ・ ヨ ト ……

Спасибо за внимание!

- Василевский Ю.В., Данилов А.А., Николаев Д.В., Руднев С.Г., Саламатова В.Ю., Смирнов А.В. Конечно-элементный анализ задач биоимпедансной диагностики ЖВМиМФ (2012) 52, №4, 733–745
- A. A. Danilov, D. V. Nikolaev, S. G. Rudnev, V. Yu. Salamatova and Yu. V. Vassilevski, Modelling of bioimpedance measurements: unstructured mesh application to real human anatomy. *Russ. J. Numer. Anal. Math. Modelling* (2012) 27, No 5, 431–440
- A. A. Danilov, V. Yu. Salamatova and Yu. V. Vassilevski, Mesh generation and computational modeling techniques for bioimpedance measurements: an example using the VHP data. J. Phys.: Conf. Ser. (2012) 407, 012004, doi: 10.1088/1742-6596/407/1/012004
- A. A. Danilov, V. K. Kramarenko, D. V. Nikolaev, S. G. Rudnev, V. Yu. Salamatova, A. V. Smirnov and Yu. V. Vassilevski, Sensitivity field distributions for segmental bioelectrical impedance analysis based on real human anatomy. J. Phys.: Conf. Ser. (2013) 434, 012001, doi: 10.1088/1742-6596/434/1/012001
- Danilov A.A., Kramarenko V. K., Nikolaev D.V. and Yurova A. S., Personalized model adaptation for bioimpedance measurements optimization. Russ. J. Numer. Anal. Math. Modelling (2013) 28, No 5, 459–470

http://www.inm.ras.ru/research/bioimpedance

Александр Данилов (ИВМ РАН)

Персональные модели БИА