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Evolutionary Principles:

» Heredity
» Variability

» Natural selection

Charles Darwin,
1809-1882



RNA World and Eigen’s Model:

The RNA world hypothesis proposes that life based on
ribonucleic acid (RNA) predates the current world of life based
on deoxyribonucleic acid (DNA), RNA and protein.

» M. Eigen, Naturwisenschaften, 58(10),
1971: 465-523

» M. Eigen, J. McCaskill, P. Schuster, J Phys
Chem, 92(24), 1988:181-1891

» M. Eigen, P. Schuster, The Hypercycle,
Springer, 1979

Manfred Eigen, 1927



Model for Catalytic Growth of Macromolecules:

Flow reactor
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y; is the absolute number of the ith macromolecule,
i=1,2,...n, Y 1, y; = Const.



Particular Cases for the Replicator Equation:

» Independent replication:

—=a, t=1,....n
Yi

» Autocatalytic replication:

%:biyi, i=1,...,n

i
» Hypercyclic replication:
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The Replicator Equation:
» General case: )
% = Zaz‘jyj = (Ay);
L

Equations for the flow reactor
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Principle of Competitive Exclusion:

» Independent replication
Z apy), Y pi=1

» Autocatalytic replication

pi = pl bip; — Z b_]p] sz =1
J

(1,0,0)

(0,0,1)



Hypercyclic Replication:

pi =pilkipic1 — Y _kjpjpj1), Y _pi=1

J

» The inner rest point p € int .S, is globally stably for the
short (n = 2,3,4) hypercycles

» The hypercyclic reaction is permanent: for any ¢
pi(t) > d > 0 starting for some ¢

» For n > 5 a globally stable limit cycle appears

Ref: Hofbauer and Sigmund, Evolutionary Games and Population Dynamics,
Cambridge, 1998

Mallet-Paret and Smith, J Dyn Diff Eq, 2, 1990



Variability:

pi =pilkipici — f), i=1,...,

4
F=> kppi1, pe S
i=1



Natural Selection:
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pi = pi(kipi-1 — f),1=1,2,3, p; =pi(kipi-1 — f),i=4,5,6
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Parasites:

plzpl(klplflif)) izla"'an

4
f=> kppic1, pESu
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Replicator Equation (ODE):

UV = v; [(Av)i - floc(t)} , i1=1,...,n.

Here

v(t) = (Vi(t),...,vn(t)), v €S, = {v € RY: Zv =1},

The mean fitness is given by

n

F1t) = (Av, v) =) (Av)u,

i=1

and the fitness of the i-th molecule is

(Av); = aijo;(t)
j=1



Open Replicator System: Stable Inner Rest Point




Open Replicator System:

Vil




Open Replicator System: Stable Heteroclinic Cycle




Open Replicator System: The Case of Four Dimensions




Distributed Replicator Equation with the Global
Regulation of the First Type:

8tui = U; [(Au)z - fSp(t)] + dzAu“ = 1, ey,
Here,
u(x,t) = (u1(x,t),...,un(x,t)), x€QCR™ t>0.

The condition of global regulation:

uelnz{ulxtz i/ 1}
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’Lti(x, O) = QDZ'(X),

=0, =09

Mean integral fitness:

n

MOEDY /Q ui(Au); dx = /Q (Au, u) dx.

i=1



Stability of Spatially Homogeneous Solutions in the
General Case (Type I):

Theorem

Let w € int S, be an asymptotically stable equilibrium of the
ODE replicator equation. Then for this point to be an
asymptotically stable stationary solution to the distributed
replicator equation (PDE) it is necessary that

Zdi>£7 5:<AVAV7W>7
i—1 A1

where d; are diffusion coefficients, and Ay is the first nonzero
etgenvalue of the following boundary problem:

AY(x) + Mp(x) =0, x€Q,  Onleer =0.



The Distributed Hypercyclic System. Numerical
Example:
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Distributed Hypercyclic System:
Small perturbation of a hamiltonian system

divf + wi(aiu; — fi) = ey(z),
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Distributed Replicator Equation with the Global
Regulation of the Second Type:

Ov; = Q}Z((xAV)Z — fsP(t) + diAvi), 1=1,...,n,

where now

FoP(t) = /Avv ZdHVvZH



Stability of Spatially Homogeneous Solutions in the
General Case (Type II):

Theorem

Let w € int S, be an isolated equilibrium of the ODE replicator
equation. Then the asymptotical stability (instability) of this
point implies asymptotical stability (instability) of the same
equilibrium for the distributed replicator equation with the global
requlation of the second type, if

L
dmin > )
A1

and p is the mazimal real part of the eigenvalues of A.



Local Solutions (Type II Global Regulation) :

Consider problem
u(x)
10

up(druf — agug, + 1) =0,
up,(0) = up,(1) = 0,
where k =1,...,n.

One possible solution is 4

al
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The Distributed Open Replicator System:




The Distributed Open Replicator System
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Real Biological Objects:

» T.A. Lincoln, G.F. Joyce.
Self-Sustained Replication of an RNA Science
Enzyme// Science. 2009. 323. P.1229-1232
» N. Vaidya, M.L. Manapat, [.A. Chen, R. nature
Xulvi-Brunet, E.J. Hayden, N. Lehman.
Spontaneous network formation among

cooperative RN A replicators// Nature.
2012.
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Spontaneous network formation among
cooperative RNA replicators

Nilesh Vaidya', Michael L. Manapat?, Irene A. Chen’+, Ramon Xulvi-Brunet®, Eric J. Hayden* & Niles Lehman'

The origins of life on Earth required the establishment of self-replicating chemical systems capable of maintaining and
evolving biological information. In an RNA world, single self-replicating RNAs would have faced the extreme cha.llenge of
possessing a mutation rate low enough both to sustain their own information and to comp fully against mol
parasites with limited evolvability. Thus theoretical analyses suggest that networks of interacting molecules were more
likely to develop and sustain life-like behaviour. Here we show that mixtures of RNA fragments that self-assemble into
self-replicating ribozymes spontaneously form cooperative catalytic cycles and networks. We find that a specific
three-membered network has highly cooperative growth dynamics. When such cooperative networks are competed
directly against selfish autocatalytic cycles, the former grow faster, indicating an intrinsic ability of RNA populations to
evolve greater complexity through cooperation. We can observe the evolvability of networks through in vitro selection.
Our experiments highlight the advantages of cooperative behaviour even at the molecular stages of nascent life.
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Figure 2 | Cooperative chemistry out-competes selfish chemistry when
directly competed. a, Empirical results using cooperative (I, I, and 5, that is,
Fig. 1b) and selfish subsystems (S;, S and S;, where IGS and IGS targets were
changed to be matching in each subsystem). Yields of total WeXeY+Z RNA
tracked the concentrations of cooperative (mismatched) or selfish (matched)
W-containing RNAs (0.05 uM initial concentrations) over time either when the
cooperative (green) and selfish (red) sets of subsystems were incubated
separately (dashed lines) or together in the same reaction mixture (solid lines;
upper left inset). Data points are averages of three independent trials. Error bars
show the standard error of the mean (s.e.m.), and the yields of the cooperative
trials in the mixed experiment are significantly greater than those of the selfish
trials at the 10- and 16-h time points (P < 0.05 by t-tests using Sidak’s
correction for multiple a posteriori comparisons). b, Simulation of growth
dynamics using a toy model of the network of cooperation and selfish
interactions (see Supplementary Information). Cooperative enzymes fare better
in competition than do selfish enzymes, as demonstrated empirically in panel a.
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Figure 3 | The design. The

middle nudeotides of the IGS and the tags were B
RNA pools. A reaction of 300 pmol each (0.5 M) of

avcWens aneW* X auWeX oY XeYoZ, YeZand Z was sampled at
0.5,2, 4 and 8 h, and millions of recombined full-length WeXsY+Z ribozymes
were genotyped by nudeotide sequence analysis (Supplementary Table 2).

b, Comparison of growth curves from fixed and randomized RNAs. Yields over
time were compared for the simple three-membered cycle (filled triangles,
UG + AyA + CzU; the sum of the three curves in Fig. 1d) to that in the
randomized format (flled circles, panel a) when both were performed at the
same RNA pool concentrations (0.05 ). ¢, Proposed succession from simple
to complex networks using genotype frequency data from experiment in panel
a. Simple autocatalytic cycles where M and N are complementary were directly
tracked by the sum of such We XeYeZ molecules (dashed line with crosses;for
example, AzU). Reci ked by the sum (X 10,

ate diverse

for ease of presentation) of the joint frequencies of all genotypes that can
potentially participate in such cycles (dashed line with squares; for example,
AxA + UxU). The rise o[thrcemembeled cycles can bc secn from the sum
(10,000 for ease of
Fig. Ib and its two permutations by )llnmnn (solid l.\ne UxG + AyA + CzU;
UyG + AzA + CxU; UzG + AxA + CyU). See Supplementary Information for
calculation of thejoint frequencies. d, The potential network of RNA genotypes.
Each node is one of the 48 possible MjN genotypes; size scales with relative
frequency in the 8 h pool. Nodes are autocatalysts (red) or those that must
replicate cooperatively (green). Grey arrows show all possible direct catalytic
events; orange arrows show reciprocal two-membered cycles in which the
frequencies of both members atleast double betveen 30 min and 2 green
arrows show key three-membered green i studied in
depth (Fig. 1b), thin green are permutations by junction, dotted green is AxC +
GyA + UyU. Starred genotypes can participate in a four-membered network.

‘genotypes:

DA™



Numerical Solution for Complex Replicator Matrix:
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Figure : A catalytic network of macromolecules. There are six
macromolecules. The arrows show the catalytic activity of the
molecules. The coefficients are the corresponding rate constants. This
network is inspired by the catalytic network of self-replicating RNA
molecules, which was shown to be capable of sustained replication



Numerical Solution for Complex Replicator Matrix:

iy = ug ((Au), — f(u)), k=1,...,6,
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Numerical Solution for Complex Replicator Matrix
(Type I):
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Figure : Solutions to the replicator equation with the global
regulation of the first type on © = (0, 1) with with diffusion
coefficients d; = (0.4,0.5,0.4,0.5,0.4,0.5). Left panel: Solutions at
the moment ¢ = 60. Right panel: The averages of the solutions
v;(t), i =1,...,6 depending on time ¢



Numerical Solution for Complex Replicator Matrix
(Type 1I):
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Figure : Solutions to the replicator equation with the global
regulation of the second type on Q = (0,1) with diffusion coefficients
dy = (0.04,0.05,0.04, 0.05,0.04,0.05). Left panel: Solutions at the
moment ¢ = 40. Right panel: The averages of the solutions
v;(t),i=1,...,6 depending on time ¢
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Numerical Solution for Complex Replicator Matrix:
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Figure : The time dependent behavior of the mean fitness in the
model with global regulation of Type I (left) versus the model with
global regulation of type II (right) for the same diffusion coefficients
dy = (0.04,0.05,0.04, 0.05,0.04,0.05)



Numerical Solution for Complex Replicator Matrix
(Type 1I):
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Figure : Solutions in the (z,t) space on 2 = (0,1)
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Thank you for your attention!

Questions?

e-mail: alexander.bratus@yandex.ru



