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Evolutionary Principles:

◮ Heredity

◮ Variability

◮ Natural selection

Charles Darwin,
1809–1882



RNA World and Eigen’s Model:

The RNA world hypothesis proposes that life based on
ribonucleic acid (RNA) predates the current world of life based
on deoxyribonucleic acid (DNA), RNA and protein.

Manfred Eigen, 1927

◮ M. Eigen, Naturwisenschaften, 58(10),
1971: 465–523

◮ M. Eigen, J. McCaskill, P. Schuster, J Phys
Chem, 92(24), 1988:181-1891

◮ M. Eigen, P. Schuster, The Hypercycle,
Springer, 1979



Model for Catalytic Growth of Macromolecules:

Flow reactor
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yi is the absolute number of the ith macromolecule,
i = 1, 2, . . . n,

∑n
i=1 yi = Const.



Particular Cases for the Replicator Equation:

◮ Independent replication:

ẏi
yi

= ai, i = 1, . . . , n

◮ Autocatalytic replication:

ẏi
yi

= biyi, i = 1, . . . , n

◮ Hypercyclic replication:

ẏi
yi

= kiyi−1, i = 1, . . . , n, y0 ≡ yn



The Replicator Equation:

◮ General case:
ẏi
yi

=
∑

j

aijyj = (Ay)i

Equations for the flow reactor

ẏi
yi

= ci − f1(t)

ẏi
yi

= biyi − f2(t)

ẏi
yi

= kiyi−1 − f3(t)

General case

ẏi
yi

=
∑

j

aijyj − f(t), f(t) =

n
∑

i,j=1

aijyiyj = 〈Ay,y〉



Principle of Competitive Exclusion:

pi =
yi
n
∑

i=1
yi

◮ Independent replication

ṗi = pi(ai −
∑

j

ajpj),
∑

pi = 1

◮ Autocatalytic replication

ṗi = pi(bipi −
∑

j

bjp
2
j ),

∑

pi = 1



Hypercyclic Replication:

ṗi = pi(kipi−1 −
∑

j

kjpjpj−1),
∑

pi = 1

◮ The inner rest point p̂ ∈ intSn is globally stably for the
short (n = 2, 3, 4) hypercycles

◮ The hypercyclic reaction is permanent: for any i
pi(t) ≥ δ > 0 starting for some t

◮ For n ≥ 5 a globally stable limit cycle appears

Ref: Hofbauer and Sigmund, Evolutionary Games and Population Dynamics,
Cambridge, 1998

Mallet-Paret and Smith, J Dyn Diff Eq, 2, 1990



Variability:

ṗi = pi(kipi−1 − f̄), i = 1, . . . , n

f̄ =

4
∑

i=1

kipipi−1, p ∈ S4.



Natural Selection:

ṗi = pi(kipi−1 − f̄), i = 1, 2, 3, ṗi = pi(kipi−1 − f̄), i = 4, 5, 6

f̄ =
6

∑

i=1

kipipi−1,
∑

pi = 1



Parasites:

ṗi = pi(kipi−1 − f̄), i = 1, . . . , n

f̄ =

4
∑

i=1

kipipi−1, p ∈ S4.



Replicator Equation (ODE):

v̇i = vi

[

(Av)i − f loc(t)
]

, i = 1, . . . , n.

Here

v(t) = (v1(t), . . . , vn(t)), v ∈ Sn = {v ∈ R
n
+ :

∑

i

vi = 1},

The mean fitness is given by

f loc(t) = 〈Av, v〉 =

n
∑

i=1

(Av)ivi,

and the fitness of the i-th molecule is

(Av)i =

n
∑

j=1

aijvj(t)



Open Replicator System: Stable Inner Rest Point
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Open Replicator System:
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Open Replicator System: Stable Heteroclinic Cycle
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Open Replicator System: The Case of Four Dimensions
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Distributed Replicator Equation with the Global

Regulation of the First Type:

∂tui = ui [(Au)i − f sp(t)] + di∆ui, i = 1, . . . , n,

Here,

u(x, t) = (u1(x, t), . . . , un(x, t)), x ∈ Ω ⊂ R
m, t > 0.

The condition of global regulation:

u ∈ In =

{

ui(x, t) ≥ 0:

n
∑

i=1

∫

Ω

ui(x, t) dx = 1

}

ui(x, 0) = ϕi(x),
∂ui
∂n

∣

∣

∣

∣

Γ

= 0, Γ = ∂Ω

Mean integral fitness:

f sp(t) =

n
∑

i=1

∫

Ω

ui(Au)i dx =

∫

Ω

〈Au, u〉 dx.



Stability of Spatially Homogeneous Solutions in the

General Case (Type I):

Theorem
Let ŵ ∈ intSn be an asymptotically stable equilibrium of the
ODE replicator equation. Then for this point to be an
asymptotically stable stationary solution to the distributed
replicator equation (PDE) it is necessary that

n
∑

i=1

di >
β

λ1
, β = 〈Aŵ, ŵ〉,

where di are diffusion coefficients, and λ1 is the first nonzero
eigenvalue of the following boundary problem:

∆ψ(x) + λψ(x) = 0, x ∈ Ω, ∂nψ|x∈Γ = 0.



The Distributed Hypercyclic System. Numerical

Example:
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Distributed Hypercyclic System:

Small perturbation of a hamiltonian system

diu
′′
i + ui(aiui − f̄1) = εψ(x),

u′i(0) = u′i(1) = 0, i = 1, . . . , n.
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Distributed Replicator Equation with the Global

Regulation of the Second Type:

∂tvi = vi((Av)i − f sp(t) + di∆vi), i = 1, . . . , n,

where now

f sp(t) =

∫

Ω
(〈Av,v〉 −

n
∑

i=1

di‖∇vi‖)dx.



Stability of Spatially Homogeneous Solutions in the

General Case (Type II):

Theorem
Let ŵ ∈ intSn be an isolated equilibrium of the ODE replicator
equation. Then the asymptotical stability (instability) of this
point implies asymptotical stability (instability) of the same
equilibrium for the distributed replicator equation with the global
regulation of the second type, if

dmin >
µ

λ1
,

and µ is the maximal real part of the eigenvalues of A.



Local Solutions (Type II Global Regulation) :

Consider problem

uk(dku
′′
k − akuk + f

sp
) = 0,

u′k(0) = u′k(1) = 0,

where k = 1, . . . , n.
One possible solution is

u1(x) =

{

f
sp

a1
(1 + cosmπx) x ∈ (0, 1/m],
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The Distributed Open Replicator System:
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The Distributed Open Replicator System
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Real Biological Objects:

◮ T.A. Lincoln, G.F. Joyce.
Self-Sustained Replication of an RNA

Enzyme// Science. 2009. 323. P.1229–1232

◮ N. Vaidya, M.L. Manapat, I.A. Chen, R.
Xulvi-Brunet, E.J. Hayden, N. Lehman.
Spontaneous network formation among

cooperative RNA replicators// Nature.
2012.









Numerical Solution for Complex Replicator Matrix:

Figure : A catalytic network of macromolecules. There are six
macromolecules. The arrows show the catalytic activity of the
molecules. The coefficients are the corresponding rate constants. This
network is inspired by the catalytic network of self-replicating RNA
molecules, which was shown to be capable of sustained replication



Numerical Solution for Complex Replicator Matrix:

u̇k = uk
(

(Au)k − f(u)
)

, k = 1, . . . , 6,

A =

















0 0 α 0 0 γ
α 0 0 0 γ 0
0 α 0 γ 0 0
γ 0 0 β 0 0
0 0 γ 0 β 0
0 γ 0 0 0 β

















f(u) = α
∑

1≤i≤j≤3

uiuj + γ
∑

1≤i≤j≤6

uiuj + β
∑

4≤i≤6

u2i



Numerical Solution for Complex Replicator Matrix

(Type I):

x
t

Figure : Solutions to the replicator equation with the global
regulation of the first type on Ω = (0, 1) with with diffusion
coefficients d1 = (0.4, 0.5, 0.4, 0.5, 0.4, 0.5). Left panel: Solutions at
the moment t = 60. Right panel: The averages of the solutions
vi(t), i = 1, . . . , 6 depending on time t



Numerical Solution for Complex Replicator Matrix

(Type II):

x t

Figure : Solutions to the replicator equation with the global
regulation of the second type on Ω = (0, 1) with diffusion coefficients
d2 = (0.04, 0.05, 0.04, 0.05, 0.04, 0.05). Left panel: Solutions at the
moment t = 40. Right panel: The averages of the solutions
vi(t), i = 1, . . . , 6 depending on time t



Numerical Solution for Complex Replicator Matrix:

Figure : The time dependent behavior of the mean fitness in the
model with global regulation of Type I (left) versus the model with
global regulation of type II (right) for the same diffusion coefficients
d2 = (0.04, 0.05, 0.04, 0.05, 0.04, 0.05)



Numerical Solution for Complex Replicator Matrix

(Type II):

Figure : Solutions in the (x, t) space on Ω = (0, 1)
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Thank you for your attention!

Questions?

e-mail: alexander.bratus@yandex.ru


