

### Main Trend: Interdisciplinary Analysis, Design, Diagnosis and Optimization of Complex Biomedical Systems





### Trend: Typical Development/Analysis Flow for Complex Biomedical Systems is Hierarchical



(Kim, Lang MIT)

(Vassilevski, INM; Olshanskii U. Houston)

(Voldman, Han, MIT)



**Trend: Typical Development/Analysis Flow for Complex** 

Nano-fluidic Channels En (Voldman, Han, MIT)

Energy Harvesting MEMs Arterial Bifurcation (Kim, Lang MIT) (Vassilevski, INM; Olshanskii U. Houston)

### Trend: Typical Development/Analysis Flow for Complex Biomedical Systems is Hierarchical





Key Question: how do you choose V?



How to choose V?



Example : Cardiovascular Modeling



• Model of Artery flow relates the average pressure and net flow at the ends of the section (ports).



# Step 2: Automated Compact Dynamical Modeling for LINEAR Systems

|                      | Basic<br>Technique                          | Stability/<br>Passivity                                                  |
|----------------------|---------------------------------------------|--------------------------------------------------------------------------|
| TBR,<br>Hankel       | Moore 81<br>Glover 84                       | Phillips<br>Daniel02,<br>Wong04                                          |
| POD, KL,<br>PCA, SVD | Wilcox<br>Peraire91,<br>PMTBR04             | Bond Daniel<br>ICCAD08<br>indefinite<br>E: A+A <sup>T</sup>              |
| Moment,<br>Matching  | AWE90,<br>PVL<br>Felmann94<br>Rutishauser55 | PRIMA97only if $E>0$ , $A+A^T<0$ Bond DanielICCAD08indefinite $E, A+A^T$ |

# Examples (11): Cardiovascular Modeling (4)



### Step 2: Automated Compact Dynamical Modeling for LINEAR Systems

## Example of Parameterized Model Order Reduction for an RF inductor



Ref: Daniel, Ong, Low, Lee, White, "A Multiparameter Moment Matching Model Reduction Approach for Generating Geometrically Parameterized Interconnect Performance Models", IEEE Trans on CAD, May 2004.

|                      |                                             |                                                                                                      | Non-Linear Systems                                                                      |                                                     |                                                         |                                                            |
|----------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------|
|                      | Basic<br>Technique                          | Stability/<br>Passivity                                                                              | Parameters<br>Variations                                                                | Basic<br>Technique                                  | Stability/<br>Passivity                                 | Parameter/<br>Variations                                   |
| TBR,<br>Hankel       | Moore 81<br>Glover 84                       | Phillips<br>Daniel02,<br>Wong04                                                                      | Heydari01                                                                               | TBR-TPWL<br>Vasilyev03                              |                                                         |                                                            |
| POD, KL,<br>PCA, SVD | Wilcox<br>Peraire91,<br>PMTBR04             | Bond Daniel<br>ICCAD08<br>indefinite<br>E. A+A <sup>T</sup>                                          | Phillips04                                                                              | Wilcox<br>Peraire99                                 | Stable-<br>TPWL<br>Bond<br>Daniel<br>ICCAD07,<br>TCAD09 | Parameter-<br>TPWL<br>Bond<br>Daniel<br>ICCAD05,<br>TCAD07 |
| Moment,<br>Matching  | AWE90,<br>PVL<br>Felmann94<br>Rutishauser55 | PRIMA97<br>only if $E>0$ ,<br>$A+A^{T}<0$<br>Bond Daniel<br>ICCAD08<br>indefinite<br>$E$ , $A+A^{T}$ | one-param,<br>Weile99<br>Multi-param<br>Daniel04,<br>Statistical<br>Moselhy<br>Daniel10 | Quadratic<br>Chen00,<br>TPWL01,<br>PWP03,<br>NORM03 |                                                         |                                                            |

### Step 2: Automated Compact Dynamical Modeling for NON-LINEAR Systems

### Example of PMOR of a Nonlinear System: Micro-Electro-Mechanical Pressure Sensor



Reference: Bond, Daniel, "Stable Macromodels for Nonlinear Descriptor Systems through Piecewise-Linear Approximation and Projection", IEEE Trans on CAD, Oct 2009.



### Examples (9): Cardiovascular Modeling (2)

# Example of Cardiovascular system





Example of analysis of Electronic Complex System with PMOR: e.g. RF or mm-wave distributed amplifier [Bond, Mahmood, Daniel 10]

Reference: Bond, Mahmood, Sredojevic, Li, Megretski, Stojanovic, Avniel, Daniel, "Compact Stable Modeling of Nonlinear Analog Circuits using System Identification via Semi-Definite Programming and Robustness Certification," IEEE Trans. on CAD, Sep. 2010 19

Need Uncertainty Quantification Tools (i.e. Stochastic Field Solvers) for Complex Systems in Bio-Medical Engineering





# Need Uncertainty Quantification Tools (i.e. Stochastic Field Solvers) for Complex Systems in Bio-Medical Engineering



### **General Background for all Field Solvers**



### State of the Art of Sampling-Based Stochastic Solvers



- J.Sci.Comput.04, Ye TCAD09], speedup less than 5x
- Parameterized model order reduction (PMOR) [Variational PMTBR Phillips04, Bui-Thanh08, Villena 09, Boyayal10, Moselhy Daniel10]

Stochastic Solver via Parameterized Model Order Reduction







### Very Large 3D Example: Surface Roughness on I/O Pad

Example description:

- large square parallel place capacitor (N=21,000 discretization elements)
- with surface roughness (Gaussian, size=20x20 correlation lengths),



Ref: T. Moselhy, L. Daniel, "Variation-Aware Interconnect Extraction using Statistical Moment Preserving Model Order Reduction," Design Automation and Test in Europe (DATE), 2010.

# Very Large 3D Example: Surface Roughness on I/O Pad Time & Memory Results

- MonteCarlo or Stochastic Collocation can only be estimated, since example is too large (323 uncorrelated parameters)
- All comparisons are for the same estimated 5% accuracy

| Method                     | Time                    | Memory | Comments                                        |
|----------------------------|-------------------------|--------|-------------------------------------------------|
| Stochastic<br>Collocation  | (2000 hours)            | 5 GB   | 209,628 solves for 2 <sup>nd</sup> order quadr. |
| Monte-Carlo                | (150 hours)             | 5 GB   | 15,000 solves                                   |
| SMOR<br>[Moselhy Daniel10] | 10 hours<br>speedup 15x | 5 GB   | size reduced<br>model: 997                      |

Ref: T. Moselhy, L. Daniel, "Variation-Aware Interconnect Extraction using Statistical Moment Preserving Model Order Reduction," Design Automation and Test in Europe (DATE), 2010.



# Efficient Design Optimization of Complex Systems Example MRI coils design minimizing heat (SAR)



Efficient Design Optimization of Complex Systems Example MRI coils design minimizing heat (SAR)





# Efficient Design Optimization of Complex Systems Example MRI coils design minimizing heat (SAR)

|                                                                                                                                              | SAR computation                            | coil optimization |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------|
| SemCad (time domain approach)                                                                                                                | 15h, 0.5GG                                 | not feasible      |
| HFSS (FEM frequency domain)                                                                                                                  | 12h, 250GB<br>for S-matrix                 | not feasible      |
| Developing new Field Solvers<br>[Polimeridis, Villena, Hochman,<br>White, Daniel12]                                                          | 35h 8cores offline<br>+15sec<br>9GB +800GB | ~ 4<br>conf/min   |
| Combined optimization loop with<br>"on-demand construction" of<br>Parameterized Reduced Model<br>[Mahmood, Villena, Daniel<br>expected 2014] |                                            | ~ 200<br>conf/min |

# Efficient Characterization of Complex Systems E.g.: Diagnosis of Cardiovascular Diseases

Spaghetti network of arteries and veins



Reference: Bond, Moselhy, Daniel, "System Identification Techniques for Modeling of the Human Arterial System," SIAM Conference on the Life Sciences, Pittsburgh, PA, July 2010. (Invited Paper)

### Conclusions State of the Art and Trends in Complex Systems

- · Main Trend: be able to "handle" complex systems
  - i.e. biomedical systems of interconnected dynamical components
  - hierarchical design/analysis flow.
- Step1: Need effective PDE solvers to help "component" Engineers
  - must handle uncertainty quantification
  - Result: Parameterized Model Order Reduction can accelerate any available sampling-based stochastic solver (15x-90x speedups)

#### • Step2: Need Model Order Reduction to help "system" Engineers

- generate models automatically
- preserve physical properties (stability, dissipativity)
- Models can be instantiated for different values of parameters
- Result: parameterized model order reduction can accelerate "inverse problems" on complex systems (speedups 50x)