Павлович Е.Н.

"Предельное поведение открытых циклических репликаторных систем"

научный руководитель Братусь А.С.

Замкнутая репликаторная система

Замкнутая репликаторная система

$$\dot{v}_i = v_i((Av)_i - f^{loc}(t)), \quad i = 1, \cdots, n.$$
 (1)

 $v_i(t) \ge 0$ — концентрация *i*-того вида в момент времени t, $v = v(t) = (v_1(t), \cdots, v_n(t)) \in \mathbb{R}^n$ - вектор функция из nкомпонент, A — постоянная матрица $n \times n$ с элементами $a_{ij} \in \mathbb{R}, (Av)_i = \sum_{j=1}^n a_{ij}v_j(t)$ $\sum_{i=1}^n v_i = 1$ — суммарная концентрация видов предполагается постоянной, отсюда

 $f^{loc} = \langle Av, v \rangle$ — постоянный поток, выводящий излишки концентрации.

Открытая репликаторная система

$$\dot{u}_i = u_i((Au)_i Y(f) - g_i) \tag{2}$$

$$i = 1, 2, \cdots, n, \quad t > 0, \quad u_0(t) = u_n(t), \quad u_i(0) = u_i^0.$$

 $u_i(t) \ge 0$ b — численность макромолекулы i-ого типа, u_i^0 —начальные значения $u_i(t)$, $A = (a_{ij})$ — матрица $n \times n$, характеризующая взаимодействие видов,

 g_i — скорости диссипации,

 $f(t) = \sum_{i=1}^{n} u_i(t)$ — суммарная численность популяции. Y(f(t)) > 0 функция, отражающая конкуренцию видов за ресурсы

Открытая репликаторная система

Y(f) определена, непрерывна и положительна на множестве $[0, \chi)$, где $\chi = +\infty$ или $\chi = K > 0$, $fY(f) \to 0$ при $f \to 0$ $fY(f) \to 0$ при $f \to \chi$. fY(f) имеет единственный экстремум на множестве $[0, \chi)$ в точке $0 < M < \chi$, $(fY)' > 0, f \in [0, M], (fY)' < 0, f \in (M, \chi)$

Положения равновесия

$$(Au)Y(f(t)) = \overline{g}, \qquad u = A^{-1}\overline{g}/Y(f)$$

$$f(t) = \sum_{i=1}^{n} u_i = \sum_{i=1}^{n} (A^{-1}\bar{g})_i / Y(f)$$

 $A^{-1}\bar{g} = \Omega$ не зависит от времени t.

$$fY(f) = \Omega = \sum_{i=1}^{n} (A^{-1}\bar{g})_i.$$
 (3)

Если $\Omega < Y(1)$, то у системы (2) будет два положения равновесия в $int(\mathbb{R}^n_+)$ одно соответствует $f_1^* < 1$, другое $f_2^* > 1$:

$$u_{1,2}^* = \frac{(A^{-1}\bar{g})}{Y(f)} = \frac{(A^{-1}\bar{g})f_{1,2}^*}{\sum_{i=1}^n (A^{-1}\bar{g})_i},$$
(4)
(4)
(- p. 5/31)

Граничные неподвижные точки

Одна координата равна нулю на r-том месте,

$$Q_r^s = (u_1^s, u_2^s, \cdots, 0, \cdots, u_n^s),$$

Две нулевые координаты на m-том и r-том местах

$$Q_{r,m}^{s} = (u_{1}^{s}, u_{2}^{s}, \cdots, 0, \cdots, 0, \cdots, u_{n}^{s})$$

всего одна ненулевая координата на m-том месте:

$$P_m^s = (0, \cdots, 0, u_m^s, 0, \cdots, 0), \ m = 1, 2, \cdots, n,$$

 $O = (0, 0, \cdots, 0),$

Всего $2^{n+1} - 2$ граничных точки.

Замена переменных и переход к частотам

Пусть $y_i = u_i/f$, тогда уравнения для частот принимают вид:

$$\dot{y}_i = y_i((AyfY(f) - \bar{g})_i - \langle y, AyfY(f) - \bar{g} \rangle), \qquad \sum y_i = 1.$$
(5)

Дополнительное уравнение для f:

$$\dot{f} = f\langle y, AyfY(f) - \bar{g} \rangle.$$
 (6)

 $(AyfY(f) - \bar{g})_i$ — индивидуальная приспособленность вида $\langle y, AyfY(f) - \bar{g} \rangle$ — совокупная приспособленность системы взаимодействующих видов.

Случай равных коэффициентов смертности $g_i = g$

$$\dot{y}_i = y_i \left((Ay)_i - \langle y, Ay \rangle \right) fY(f), \tag{7}$$

$$\dot{f} = \langle y, Ay \rangle f^2 Y(f) - gf.$$
(8)

Основная идея: в областях $f \in (0,1)$ и $f \in (1; +\infty)$ функция fY(f) монотонна, положительна, обратима \Rightarrow система (7) орбитально топологически эквивалентна замкнутой репликаторной системе

$$\dot{u}_i = u_i((Au)_i - \langle u, Au \rangle) \tag{9}$$

Если З ненулевые н.т. уравнения (8), то существует аналогия в поведении систем.

Смысл замены переменных

Рис. 1: Разделение уравнений для частот и уравнений для численности популяции. Частоты: $\dot{y}_i = y_i ((Ay)_i - \langle y, Ay \rangle) fY(f)$, численность популяции: $\dot{f} = \langle y, Ay \rangle f^2 Y(f) - gf$. Пусть у матрицы A некоторая строка i доминируется в классическом смысле теории игр. То есть $\exists \bar{\gamma} \in S_n$ такой что

$$(Ax)_i < \bar{\gamma}^T Ax \tag{10}$$

Теорема 1 Если для открытой репликаторной системы с равными коэффициентами смертности $g_i = g$ и матрицей A существует вектор $\bar{\gamma}_{\in}S_n$ такой, что выполняется неравенство (10), то есть строка і доминируется другими строками, то $y_i \to 0$ при $t \to \infty$.

Исключение доминируемых

паразитирующая ветвь

$$A = \begin{pmatrix} 0 & k_1 & 0 \\ k_2 & 0 & 0 \\ k_4 & k_3 & 0 \end{pmatrix}, \quad k_i > 0, \quad i = 1, 2, 3, 4.$$

 A_3 доминируется другими строками, если $\exists \mu \in [0, 1]$:

$$\begin{cases} \mu k_2 > k_4 \\ (1-\mu)k_1 > k_3 \end{cases}$$
(11)

Система с матрицей-циркулянтом

Рассмотрим систему с равными значениями смертности $g_i = g$ и матрицей:

$$A = \begin{pmatrix} a_1 & a_2 & a_3 \\ a_3 & a_1 & a_2 \\ a_2 & a_3 & a_1 \end{pmatrix}, \qquad \begin{pmatrix} a_1 & a_2 & a_3 & a_4 \\ a_4 & a_1 & a_2 & a_3 \\ a_3 & a_4 & a_1 & a_2 \\ a_2 & a_3 & a_4 & a_1 \end{pmatrix}$$

a1

a2

a4

Устойчивость внутренней неподвижной

точки

Собственные значения якобиана:

$$\lambda_1 = (\sum_{j=1}^3 a_j)(1 - f_{1,2}^*), \quad \lambda_{2,3} = \frac{1}{2}(2a_1 - a_2 - a_3 \pm i\sqrt{3}(a_2 - a_3))$$

Варианты поведения точки:

 $2a_1 = a_2 + a_3 : Re\lambda_{2,3} = 0.$ В системе наблюдаются замкнутые предельные траектории вокруг точки u_2^* . $2a_1 > a_2 + a_3 : Re\lambda_{2,3} > 0.$ Точки $u_{1,2}^*$ неустойчивы. $2a_1 < a_2 + a_3 : Re\lambda_{2,3} < 0.$ Точка u_2^* устойчива, u_1^* неустойчива.

Устойчивость граничных неподвижных

точек

Неподвижные точки на осях:

$$u_1 = u^* = g e^{f_{1,2}^*} / a_1, \quad u_2 = 0, \quad u_3 = 0$$

Существуют в системе, если $a_1 > ge$.

$$\lambda_1 = g(1 - u_{1,2}^*),$$

$$\lambda_2 = g(a_3 - a_1)/a_1,$$

 $\lambda_3 = g(a_2 - a_1)/a_1.$

Точка u_2^* устойчива только если $a_1 > \max(a_2, a_3)$.

Существование и устойчивость

неподвижных точек

Рис. 2: Разделение области параметров a_i на зоны различных фазовых портретов.

Область IV

Рис. 3: $\exists \exists$ внутренние н.т. и н.т. на осях, внутренняя н.т. для $f_2^* > 1$ устойчива. Граница области $\min(a_2, a_3) < a_1 < \frac{1}{2}(a_2 + a_3), a_1 > ge.$

Область V

Рис. 4: внутренние н.т. неустойчивы, н.т. на осях неустойчивы и соединены гиперклиническими циклами, устойчивым для $f_2^* > 1$ и неустойчивым для $f_1^* < 1$.

Граница области $\frac{1}{2}(a_2 + a_3) < a_1 < \max(a_2, a_3), \qquad \sum a_i > 3ge.$

Область VI

Рис. 5: осевые неподвижные точки для $f_2 > 1$, устойчивы. В зависимости от начальных условий траектории притягивыются к одной из н.т. на осях.

Граница области $a_1 > \max(a_2, a_3), \qquad \sum a_i > 3ge.$ - р. 18/31

Область VII

Рис. 6: Траектории, начинающиеся в конусе притягиваются к нулю. Для остальных траекторий поведение системы эквивалентно области IV. Граница области $(a_1 - ge)^2 + (a_2 - ge)(a_3 - ge) > 0$, $\sum a_i < 3ge$, $a_1 > max(a_2, a_3)$

Область ІХ

Рис. 7: Траектории из конуса притягиваются к нулю. Для остальных поведение эквивалентно области V: наблюдается устойчивый гетероклинический цикл.

Граница области $a_1 < \max(a_2, a_3), a_1 > ge, \sum a_i > 3ge$ - р. 20/31

4-мерный случай:

Рис. 8: Разделение области параметров на области различных фазовых портретов. Пунктир: область существования ненулевых н.т. (8) для всех $\bar{y} \in S^4$. $m = \frac{1}{2}(a_2 + a_4)$.

4-мерный случай: гетероклинический цикл I типа

Рис. 9: Поведение частот системы (2)(слева) и численности популяции (справа) для различных начальных значений в случае $a_1 > a_3$, $\min(a_2, a_4) < a_1 < \max(a_2, a_4)$: Доказана устойчивость гетероклинического цикла первого типа для $f > f_1^*$.

4-мерный случай: гетероклинический цикл II типа

Рис. 10: Поведение частот системы (2)(слева) и численности популяции (справа) для различных начальных значений в случае $a_1 > a_3, a_1 + a_3 < a_2 + a_4, a_1 < \min(a_2, a_4)$: Доказана устойчивость гетероклинического цикла второго типа для $f > f_1^*$.

4-мерный случай: предельный цикл

Рис. 11: Поведение частот системы (2)(слева) и численности популяции (справа) для различных начальных значений в случае $a_1 > a_3$, $a_1 + a_3 < a_2 + a_4$, $a_1 < \min(a_2, a_4)$, $a_1 = 7.5$, $a_2 =$ 5, $a_3 = 10$, $a_4 = 30$, $g = \frac{1}{e}$, $Y(f) = e^{-f}$. В системе наблюдается устойчивый предельный цикл для значений f > 1.

Существование предельного цикла для гиперциклической матрицы при $n \ge 5$

$$A = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & k_1 \\ k_2 & 0 & 0 & \cdots & 0 & 0 \\ 0 & k_3 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & k_n & 0 \end{pmatrix}.$$
 (12)

Распределенная задача для репликаторного уравнения

Пусть D — открытая односвязная область в \mathbb{R}^m , m = 1, 2, 3, с гладкой границей Γ .

$$\frac{\partial v_i(x,t)}{\partial t} = v_i((Av)_i e^{-F} - g_i) + d_i \Delta v_i, \quad i = 1, 2, \cdots, n, \quad (13)$$

$$t > 0, \quad x \in D, \quad v_0(x,t) = v_n(x,t), \quad v_i(x,0) = v_i^0(x), \quad \left(\frac{\partial v_i}{\partial \bar{n}}\right)\Big|_{\Gamma} = 0.$$

 $v_i(x,t) > 0$ — концентрация макромолекулы i-ого типа, $v_i^0(x) > 0$ — начальные значения, $A = (a_{ij})^{n \times n}$, $g_i > 0$ скорости диссипации, d_i — коэффициенты диффузии, $F(t) = \int_D \sum_{i=1}^n v_i(x,t),$

Распределенная задача для репликаторного уравнения

Теорема 2 Все стационарные, пространственно однородные решения репликаторной системы для циклической матрицы, кроме нулевого решения, являются неустойчивыми, если выполняется условие

$$\sum_{i=1}^{n} d_i < \frac{g_0}{\lambda_1} \left(\frac{na_1}{\sum_{j=1}^{n} a_j} \right) \tag{14}$$

Здесь λ_1 — первое ненулевое собственное значение задачи

$$\Delta\psi(x) = -\lambda\psi, \quad x \in D, \quad \left(\frac{\partial\psi}{\partial\bar{n}}\right)\Big|_{\Gamma} = 0.$$
 (15)

Распределенная задача для репликаторного уравнения

Рис. 12: Стационарное пространственно неоднородное решение в случае циклической матрицы с $a_1 = 1$, $a_2 = 2$, $a_3 = 1.5$, g = 0.01, d = 0.001 - слева, и d = 0.05 справа

Распределенная задача

Рис. 13: Распределенное циклическое доминирование

Распределенная задача

Рис. 14: Распределенное циклическое доминирование в случае больших диффузий.

Спасибо за внимание!

•