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The population is divided into three groups:

S −→ I −→ R

The SIR ODE model (Kermack & McKendrick, 1927):

Ṡ(t) = −βS(t)I(t),

İ(t) = βS(t)I(t)− γI(t),

Ṙ(t) = γI(t),
S(t) + I(t) + R(t) = N,

S(0) = S0, I(0) = I0, R(0) = 0, S0 + I0 = N.

(SIR model)

Ref: Kermack & McKendrick, 1927
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Analysis of the SIR Model:
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Figure: (a) The phase plane of the SIR model; (b) The integral curves

Theorem
Let the spread of an infectious disease in a closed population be described by
the SIR model. Then epidemic occurs if and only if the basic reproductive
number R0 = Nβ/γ > 1. If epidemic occurs then the proportion of the
susceptibles who escaped the infection (z = S(∞)/N) can be found as the only
root of the equation

z = exp{−R0(1− z)}, 0 < z < 1.

Artem Novozhilov (MIIT) October 27, 2011 3 / 26



Assumptions Behind the SIR Model:

I A single infection triggers an autonomous process;
I The disease results in either complete immunity or death;
I Contacts are made according to the law of mass action;
I Individuals are infected for an exponentially distributed period of

time;
I All individuals are equally susceptible;
I The population is closed;
I The population size is large enough to apply deterministic

description.
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Heterogeneous SIR Model:

Ṡ = −βSI, İ = βSI − γI.

Here
β = ([contact rate]× P[successful contact])/N.

Let us assume that P[successful contact] takes only two values:

Ṡ1 = −β1S1I,

Ṡ2 = −β2S2I,

İ = β1S1I + β2S2I − γI.

Here S(t) = S1(t) + S2(t).

Ref: Gart, J.J.: Biometrics, 24:557–566, 1968
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Heterogeneous SIR Model:
Discrete version:

Ṡi = −βiSiI, i = 1, . . . , n,

İ = I
n∑

i=1

βiSi − γI, S(t) =
n∑

i=1

Si.

Ref: Ball, F.: Adv Appl Prob, 17:1–22, 1985

Continuous version:

∂

∂t
s(t, ω) = −β(ω)s(t, ω)I(t),

d

dt
I(t) = I(t)

∫

Ω
β(ω)s(t, ω) dω − γI(t),

s(0, ω) = s0(ω), I(0) = I0, S(t) =
∫

Ω
s(t, ω) dω.

Ref: Novozhilov, A: Math Biosc, 215:177–185, 2008
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SI Model with Distributed Susceptibility and
Infectivity:
Continuous version:

∂

∂t
s(t, ω1) = −β1(ω1)s(t, ω1)

∫

Ω2

β2(ω2)i(t, ω2) dω2

= −β1(ω1)s(t, ω1)Et[β2]I(t),
∂

∂t
i(t, ω2) = β2(ω2)i(t, ω2)

∫

Ω1

β1(ω1)s(t, ω1) dω1

= β2(ω2)i(t, ω2)Et[β1]S(t),

Et[β1] =
∫

Ω1

β(ω)ps(t, ω1) dω1 =
∫

Ω1

β(ω1)
s(t, ω1)
S(t)

dω1,

Et[β2] =
∫

Ω2

β(ω)pi(t, ω2) dω2 =
∫

Ω2

β(ω2)
i(t, ω2)
I(t)

dω2,

s(0, ω1) = S0ps(0, ω1), i(0, ω2) = I0pi(0, ω2).
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General Theory of Heterogeneous Populations:

∂

∂t
l(t, ω) = l(t, ω)F (t, ω), l(t, ω) ≥ 0,

F (t, ω) =
∑m1

i=1
ui(t, Gi)ϕi(ω) +

∑m2

j=1
vj(t,Hj)ψj(ω),

Gi(t) =
∫

Ω
gi(ω)l(t, ω) dω = N(t)Et[gi], i = 1, . . . , m1,

Hj(t) =
∫

Ω
hj(ω)p(t, ω) dω = Et[hi], j = 1, . . . , m2.

Ref: Karev G.P.: J Math Biol, 60:107–129, 2010
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Equivalent ODE System:

For the SIR model with distributed susceptibility

Ṡ(t) = −Et[β]S(t)I(t), Et[β] =
∫

Ω
β(ω)p(t, ω) dω,

İ(t) = Et[β]S(t)I(t)− γI(t), p(t, ω) =
s(t, ω)
S(t)

,

s(0, ω) = S0p(0, ω), I(0) = I0, S(t) =
∫

Ω
s(t, ω) dω,

Et[β] =
d

dλ
log M0[λ]

∣∣∣∣
λ=q(t)

,

q̇(t) = −I(t), q(0) = 0,

M0[λ] =
∫

Ω
exp{λβ(ω)}p(0, ω) dω.
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Homogeneous Model with Nonlinear
Transmission Function:

Theorem
The heterogeneous SIR model with distributed susceptibility can be
reduced to the homogeneous SIR model with a nonlinear transmission
function in the form

Ṡ = −h(S)I,

İ = h(S)I − γI,

S(0) = S0, I(0) = I0,

where

h(S) = S0

[
dM−1

0 [ξ]
dξ

∣∣∣∣
ξ=S/S0

]−1

.
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Power Transmission Function:

Power transmission function:

T (S, I) = βSpIq.

Ref: McCallum, H., Barlow, N. & Hone, J.: Tr Ecol Evol, 16(6):295300, 2001.

Corollary

The power transmission function T (S, I) = βSpIq with
q = 1, p = 1 + 1/k in the homogeneous SIR model can be deduced from
the mechanistic formulation of the SIR model with distributed
susceptibility when the initial distribution is a gamma-distribution with
the shape parameters k.

Ref: Novozhilov, A.: Dyn Con Dis Impul Sys, 2009, 16:136–140.
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Nonlinear Transmission Functions:
Heterogeneous SI model:

∂

∂t
s(t, ω1) = −ω1s(t, ω1)

∫

Ω2

ω2i(t, ω2) dω2,

∂

∂t
i(t, ω2) = ω2i(t, ω2)

∫

Ω1

ω1s(t, ω1) dω1,

s(0, ω1) = S0ps(0, ω1), i(0, ω2) = I0pi(0, ω2).

Corollary

The power transmission function T (S, I) = βSpIq with
q = 1 + 1/k2, p = 1 + 1/k1 in the homogeneous SIR model can be
deduced from the mechanistic formulation of the SIR model with
distributed susceptibility and infectivity when the initial distributions
are gamma-distributions with parameters k1, ν1 and k2, ν2 respectively.

Ref: Novozhilov, A.: Dyn Con Dis Impul Sys, 2009, 16:136–140.
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The Final Size of an Epidemic:

Theorem
Let ẑ = S(∞)/N be the proportion of the population that escapes
infection in the population provided I0/N → 0. Then for the SIR model
with distributed susceptibility, ẑ can be found as the only solution of the
equation

z = M0[−N(1− z)/γ],

satisfying the condition 0 < ẑ < 1. This solution exists if and only if
R0 = E0[β]Nγ−1 > 1.
Remark: If p(0, ω) = δ(ω − ω̄), β(ω̄) = const then we obtain the
well-known formula

z = exp{−R0(1− z)}.
Ref: Ball, F.: Adv Appl Prob, 17:1–22, 1985

Ref: Novozhilov, A: Math Biosc, 215:177–185, 2008
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The Final Size of an Epidemic. Examples:
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Figure: The size of the susceptible population that never gets infected versus
the initial variance of the parameter distributions. The initial means are the
same in all four cases. The parameters are
S(0) = 999, I(0) = 1, γ = 20, E0[β] = 0.05,R0 = 2.5
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The Final Size of an Epidemic:

Theorem
Let

M̃0

(
R̃0

E0[β]
(1− z)

)
≤ M0

( R0

E0[β]
(1− z)

)

for any z ∈ (0, 1). Then
ˆ̃z ≤ ẑ.

Theorem
For any distribution of susceptibility, the final epidemic size satisfies

1
1 + cv2

(1− z∗) ≤ 1− ẑ ≤ 1− z∗,

where z∗ is the solution to z = exp{−R0(1− z)} belonging to (0, 1).

Ref: Catriel, G.: J. Math Biol, in press
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Stochastic SIR Model:
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Instead of two important quantities R0 (the basic reproductive
number) and z (the final epidemic size) in the stochastic settings we
have R0, π (the probability of disease invasion) and a random variable
z = S(∞)/N .
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Stochastic vs Deterministic Epidemic Models:

Deterministic model:
1. The basic reproductive number R0 (the threshold parameter: if
R0 ≤ 1 then there is no epidemic)

2. The final size of an epidemic S(∞) (fixed number)
Stochastic model:

1. The basic reproductive number R0 (the threshold parameter: if
R0 > 1 then there is a possibility of a major outbreak)

2. The final size of an epidemic S(∞) (random variable, which, if
conditioned on the major outbreak, has an approximately normal
distribution), z = S(∞)/N

3. The probability of a major outbreak π (π > 0 iff R0 > 1)
4. The duration of an epidemic T (random variable)
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Stochastic SIR model (Analytical Results):
Let En,m be an epidemic process with n initial susceptible and m
infective individuals. Let Zn be the total number of infected
individuals. Then

Zn
D−→ Z,

if R0 ≤ 1, P[Z < ∞] = 1, if R0 > 1, P[Z < ∞] = 1− π.
Moreover, conditional upon the epidemic becoming established

n−1Zn
D−→ τ, n →∞,

where τ is the root of 1− τ = e−R0τ , and

1√
n

(Zn − nτ) D−→ N (0, σ2), n →∞.

Ref: Ball, F.: Adv Appl Prob, 17:1–22, 1985

Ref: Scalia Tomba, G.: J Appl Prob 23:563–584, 1986
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Duration of an Epidemic:
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The Final Size of an Epidemic:
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Duration of an Epidemic:
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Simulation Results:

CV = 0 CV = 0.25 CV = 0.5 CV = 1
E[z] 0.203 0.232 0.310 0.436
Ê[z] 0.204 0.233 0.311 0.437

V̂ar[z] 0.029 0.032 0.033 0.035
Ê[T ] 1.69 1.7 1.71 1.69

V̂ar[T ] 0.262 0.269 0.278 0.288
π̂ 0.5 0.498 0.497 0.514
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Conclusions:

I There is a general technique applicable to the study of epidemics
with distributed heterogeneity

I Using the theory of heterogeneous populations we obtain a simple
equation for the final size of an SIR epidemic

I It can be shown that some heterogeneous models imply simple
homogeneous models

I The results can be applied to stochastic epidemics conditioned on
the occurrence of a major outbreak

I The final epidemic size is very sensitive to the population
heterogeneity, whereas the probability of a major outbreak
together with the distribution of the duration of the epidemic are
not
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Thank you for your attention!

I Questions?

e-mail: anovozhilov@gmail.com
site: https://sites.google.com/site/anovozhilov/home
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