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Abstract. A mathematical model of infiltrative tumour growth is investigated taking into account
transitions between two possible states of malignant cells: proliferation and migration. These
transitions are considered to depend on oxygen level in a threshold manner where high oxygen
concentration allows cell proliferation, while concentration below a certain critical value induces
cell migration. The infiltrative tumour spreading rate dependence on model parameters is obtained.
It is shown that the tumour growth rate depends on the tissue oxygen level in a threshold manner.
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1. Introduction

Malignant tumours are one of the main causes of mortality in developed countries, so cancer re-
search and treatment has become increasingly important in the modern society. Significant efforts
are made to cope with cancer but the problem is still unsolved. There is a large variability in
malignant neoplasms properties as there are more than 100 types of cancer, each having a lot of
subtypes. However, it has been hypothesized [10] that nearly all cancers develop a common set of
basic characteristics: (1) self-sufficiency in growth signals, (2) insensitivity to anti-growth signals,
(3) evasion of apoptosis, (4) limitless replicative potential, (5) sustained angiogenesis and (6) tissue
invasion and metastasis. By focusing on these common elements, mathematical modelling aims to
contribute to the prevention, diagnosis and treatment of this complex disease.
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From mathematical point of view, one of the cancer hallmarks, an unlimited proliferation, im-
plies a malignant cell number exponential growth with time.In vivoexperiments andin vitro study
of multicellular tumour spheroids have demonstrated that the initial exponential phase of growth
is followed by the logistic phase, which can be described by the Gompertz equation [15]. This
transition occurs due to nutrient depletion in the tumour interior that stops proliferation and causes
necrosis. Thus, necrotic area can be found in the tumour center while dividing cells are situated in
tumour boundary. Tumours with such a structure are referredto be in a diffusion limited phase of
growth. In 1955 Thomlinson and Gray [21] proposed a mathematical model for oxygen diffusion
and consumption in order to support experimental investigation of some bronchial carcinomata
types. In 1966 Burton [1] developed a diffusion model, which described both the distribution of
oxygen in a spherical tumour and the radius of the central necrotic area. It was demonstrated that
the tumour growth curve obtained in the model could fit a Gompertzian expression. Later many pa-
pers were published where the tumour cell mitotic index (proliferation rate) was found to directly
depend on nutrient (usually oxygen or glucose) concentration [2,3,8].

Malignant cell migration is another critical property which defines tumour growth and pro-
gression. There are many types of tumours where malignant cells are considered to be practically
immotile. Tumour grows like a compact object with the total malignant cell density close to the
maximum permissible cell density in tissue. Local changes in cell population due to a division or
a cell loss result in the internal pressure variations, which in turn induce migration and tumour en-
largement. Convection-dominated mathematical models, where tissue with a tumour is considered
as incompressible fluid and cell motion is determined by convective field, are used to describe this
type of cancers [20, 22]. In models of such type there are several convection equations describing
dynamics of different tumour cell types or phases and one or more reaction-diffusion equations for
nutrients and/or drugs.

Tumours with high individual motility of their cells are also known. Glioma is a striking exam-
ple of such tumours called infiltrative [4]. Tumours of this type are characterized by a rather low
fraction of malignant cells in the tissue and an extensive penetration into the normal surroundings
provided by high individual cell motility. A general mathematical description taking into account
both convective fluxes and individual cell motility was developed by Gusev and Polezhaev [9].
Such type of models [14] is rather resource-consuming for numerical solution even in 2-D. Usu-
ally for infiltrative tumours with low relative cell densitythe convective fluxes may be neglected
and thus the model can be reduced to several simple reaction-diffusion equations for cell densi-
ties, nutrients and/or mediator concentrations [18, 19]. These models are able to describe linear
dependence of tumour size on time obtained in experiments. It was shown that the diffusion ap-
proximation for the transport process together with a logistic growth yields an overestimation of
the overall growth rate [5]. Moreover, there are experimental data obtainedin vitro and clinical data
obtainedin vivowhich indicate an inverse correlation between motility andproliferation of tumour
cell phenotypes [7]. It was called “a migration-proliferation dichotomy”. Tumour cells prolifera-
tion and migration turned out to be mutually exclusive phenotypes: the spreading suppresses cell
proliferation and vice versa. In 2006 Iomin [13] formulatedmigration-proliferation dichotomy in
the framework of the continuous time random walk transport concept. This approach based on
jump and waiting-time distributions has been used for modelling of glioma cell invasion [6]. In
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that paper only stochastic switching between proliferation and migration was considered.
Another type of mathematical models useful for migration-proliferation dichotomy investiga-

tion is discrete models. As they are based on a series of rulesfor each cell, it is possible to translate
detailed biological processes (e.g. cell-cycle events, migration, mutation pathways) into simple
rules for the model [16]. This approach is particularly useful for studying carcinogenesis, natural
selection, genetic instabilities and interactions of individual cells with each other. On the other
hand, the computational cost increases rapidly with the number of cells modelled, limiting these
methods in the spatial and temporal scales they can achieve.In 2010 Hatzikirou and co-authors [12]
used a lattice-gas cellular automaton model for investigation of migration-proliferation dichotomy
as a potential mechanism that may promote the progression from benign neoplasms to malignant
invasive tumours characterized by high migration rates. Intheir model a choice between the mi-
gration and either proliferation or apoptosis depended on the local malignant cell density.

In this paper a deterministic reaction-diffusion model of invasive tumour growth is considered
taking into account migration-proliferation dichotomy. Amalignant cell can either proliferate or
migrate. Transitions between these two stages (phenotypes) are supposed to depend on oxygen
level in a threshold manner. High oxygen concentration allows cell proliferation, while concentra-
tion below a certain critical value induces cell migration.The mathematical model is investigated
both analytically and numerically.

2. The model

We consider a tumour as a colony of living and dead cells surrounded by normal tissue. Living
cells are also subdivided into two types: proliferating andmigrating. A proliferating malignant cell
divides with a constant rate but are immotile, a migrating cell can move in a random way but do not
divide. Transitions between these two populations depend on oxygen (nutrient) concentration in
a threshold manner. Concentration above the critical value causes cell proliferation, concentration
below this value causes migration. If migrating malignant cells cannot reach region with appropri-
ate oxygen level, they start to die. In the model, we take intoaccount that though a malignant cell
can divide under hypoxia, the oxygen shortage decreases rate of proliferation dramatically [11].
We consider a tumour growing in a normal tissue with rather poor capillary system, so oxygen
diffuses from blood vessels located sufficiently away from the tumour. Both proliferating and mi-
grating malignant cells consume oxygen, however, proliferating malignant cells consume nutrient
much faster than migrating ones. Normal cells oxygen consumption has been neglected. Normal
tissue surrounding the tumour is also supposed to hinder neither cancer cell motion nor prolifera-
tion. We restrict our analysis to a single spacial dimensioncase. Formally, the model is based on
the following physical and biological assumptions:

• A tumour grows as a colony of proliferating, migrating, and dead cells with densitiesn1, n2,
andm, respectively.

• Proliferating cells divide with a constant rateB and in the case of low oxygen concentration
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s pass into migration state with the rateP1(s). For sufficiently small oxygen concentration
P1(s) should exceedB, else this transition will not occur.

• Migrating cells move randomly with coefficientDn and in the regions with high oxygen
level can be again recruited into proliferation with the rateP2(s).

• Migrating malignant cells die with the constant rated.

• Transitions between proliferating and migrating states and and vice versa depend on oxygen
concentration in a threshold manner.

• Oxygen is considered to be a crucial nutrient for tumour growth. Its distribution is governed
by diffusionDs, while consumption is governed by living malignant cells both proliferating
and migrating. We assume that cells consume oxygen with constant rate if its concentration
is not too small.

Using these assumptions the governing equations can be written as follows:

∂n1

∂t
= Bn1 − P1(s)n1 + P2(s)n2,

∂n2

∂t
= Dn

∂2n2

∂x2
+ P1(s)n1 − P2(s)n2 − dn2,

∂m

∂t
= dn2,

∂s

∂t
= Ds

∂2s

∂x2
− q

s

s+ s∗
(Kn1 + n2).

(2.1)

The transition ratesP1(s) andP2(s) are step-like functions with a common critical oxygen level
Scrit, width 1/ε and amplitudeP :

P1(s) = P
1− tanh[(s− Scrit)ε]

2
, P2(s) = P

1− tanh[(Scrit − s)ε]

2
. (2.2)

So, oxygen concentrations which deviate fromScrit over the values of the order of1/ε corre-
spond to transition functions extreme values (0 or P ).

In (2.1) the third equation decouples from the remaining system. The dead cells density profile
determines the position of necrotic area inside the tumour.Therefore it does not affect the tumour
spreading, which is governed only by the dynamics of proliferating, migrating malignant cells and
nutrient concentration, and thus in our further analysis weomit this equation in the system (2.1).

Also we take into account that oxygen concentration does notfall well below the valueScrit

when all the cells die and oxygen consumption ceases. Thus, if we assume thats∗ ≪ Scrit then the
ratio s/(s + s∗) in the last equation of (2.1) does not significantly deviate from unity and in our
further analysis we omit it.
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At the avascular stage a tumour is supposed to have a spherically symmetric shape. However,
if a tumour radius is much greater than the characteristic scale, for which cell density and nutrient
concentration distributions change significantly, a planar geometry can be considered. By our
assumption that the tumour grows in the tissue where oxygen predominantly diffuses from the
blood vessels located far away from the tumour, the system (2.1) can be solved in an infinite
region. Thus, we supplement equations (2.1) with the following boundary conditions:







n1 = 0,
n2 = 0,
sx = 0,

x → −∞,







n1 = 0,
n2 = 0,
s = Smax,

x → +∞. (2.3)

3. Travelling wave solutions

We seek the solution to (2.1) in the form of a wave travelling with a constant shape and speedc (i.e.
an autowave). Therefore, the governing equations (2.1) arereduced to a set of ordinary differential
equations by introducing the travelling coordinate frameξ = x− ct:

c
∂n1

∂ξ
+ Bn1 − P1(s)n1 + P2(s)n2 = 0,

Dn
∂2n2

∂ξ2
+ c

∂n2

∂ξ
+ P1(s)n1 − P2(s)n2 − dn2 = 0,

Ds
∂2s

∂ξ2
+ c

∂s

∂ξ
− q(Kn1 + n2) = 0

(3.1)

with the following boundary conditions:






n1 = 0,
n2 = 0,
s = σ,

ξ → −∞,







n1 = 0,
n2 = 0,
s = 1,

ξ → +∞. (3.2)

Hereσ corresponds to the limiting constant value of the substrateconcentration forξ → −∞. On
the first step we consider the asymptotic behavior of the solutions to (3.1) forξ → ±∞. In order
to do this we linearize equations (3.1) near the values (3.2)which are stationary points of (3.1) and
obtain two sets of ODEs with constant coefficients

c
∂n−

1

∂ξ
+Bn−

1 − P1(σ)n
−

1 = 0,

Dn
∂2n−

2

∂ξ2
+ c

∂n−

2

∂ξ
+ P1(σ)n

−

1 − dn−

2 = 0,

Ds
∂2s−

∂ξ2
+ c

∂s−

∂ξ
− q(Kn−

1 + n−

2 ) = 0

(3.3)
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and

c
∂n+

1

∂ξ
+ Bn+

1 + Pn+

2 = 0,

Dn
∂2n+

2

∂ξ2
+ c

∂n+

2

∂ξ
− Pn+

2 − dn+

2 = 0,

Ds
∂2s+

∂ξ2
+ c

∂s+

∂ξ
− q(Kn+

1 + n+

2 ) = 0.

(3.4)

According to the linear differential calculus the solutions to these problems are sought in the form
(n1, n2, n2ξ, s, sξ)

T ∼ k
± exp(µ±ξ)which reduces linear differential equations sets to eigenvalue

problems for coefficientsµ± as eigenvalues and constant vectorsk
± as eigenvectors. Eigenvalues

µ± indicate the rate of solutions exponential convergence (divergence) to the boundary values
(3.2) asξ → ±∞ and superscripts ‘+’ and ‘-’ refer to the linearized problemon +∞ and−∞,
respectively.

For the caseξ → +∞ it appears that the linearized set of ODEs (3.4) has three solutions
with the rate of exponential convergence to the boundary conditions given byµ+

1 = −B/c, µ+

2 =
−c/Ds andµ+

3 = (−c −
√

c2 + 4(P + d)Dn)/2Dn, one solution unbounded forξ → +∞ with
the rate of exponential divergenceµ+

4 = (−c +
√

c2 + 4(P + d)Dn)/2Dn, and a single solution
with a zero eigenvalue,µ+

5 = 0, of exponential growth. It can be shown that the stationary point
{S1 : n1 = 0, n2 = 0, s = 1} of (3.1) is a saddle-node.

In the same manner,ξ → −∞ we derive the set of ODEs (3.3) linearized near the boundary
conditions (3.2) for the case. Two solutions can be easily found: one with zero eigenvalueµ−

1 =
0 and the unbounded one corresponding toµ−

2 = −c/Ds. Three others are roots of the cubic
polynomial:

cDnµ
3 + (BDn + c2 − P1(σ))µ

2 + c(B − d− P )µ−Bd−BP2(σ) + dP1(σ) = 0. (3.5)

A localized solution of equations (3.1), (3.2) exists only if at least one root of equation (3.5) is
a real positive number. Further analytical treatment is possible only for the case(Scrit − σ)ε ≫ 1.
Then equation (3.5) is reduced to the following form:

(cµ+ B − P )(Dnµ
2 + cµ− d) = 0. (3.6)

Therefore, we get one more unbounded solution withµ−

3 = (−c −
√
c2 + 4dDn)/2Dn and two

solutions with exponential convergence coefficients to theboundary conditionsµ−

4 = (−c +√
c2 + 4dDn)/2Dn andµ−

5 = (P − B)/c. In this case stationary point{S1 : n1 = 0, n2 =
0, s = σ} of (3.1) is also a saddle-node. It should be noted that such rough estimation does not
impose any significant restriction (besidesc > 0) on the autowave speed.
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4. Numerical simulations

Equations (2.1) are solved numerically in a sufficiently large domain, so that the boundary con-
ditions (2.3) imposed at the edge points of the space grid do not influence the solution. For our
numerical algorithm we use the splitting method with respect to physical processes. Initially, we
solve ODEs set which describes cell proliferation, transitions and death processes as well as nu-
trient consumption using the fourth order Runge-Kutta algorithm. As a next step, mass transfer
equations for oxygen and cells are solved with the Crank-Nicolson method of the second order
approximation in both space and time.

Any mathematical model of biological system depends crucially on parameter values choice.
The parameters vary drastically depending on tumour type, localization, progression, etc. Parame-
ters choice in the model is determined by the objective whichis rather a qualitative characterization
of an infiltrative tumour growth considering migration-proliferation dichotomy, than a quantitative
description of any specific tumour. Therefore, the parameter values are taken in the experimentally
observable range, and they are not related to a certain kind of cancer. The other important limita-
tion on parameters is that their values are chosen in such a way that the tumour cell density remains
substantially smaller, than the maximal possible value. This feature is typical for the infiltrative
type tumour.

Equations (2.1) are already given in a non-dimensional form. In order to estimate the cor-
responding parameters we take characteristic scales of time and length:T0 = 104 s andL =
5 · 10−2 cm, respectively. The cell density is scaled onnmax = 107 cells/cm3 (maximal cell den-
sity is the same for both proliferating and migrating cells), while the oxygen concentration in the
tissue near blood vessels is supposed to beSmax = 10−7 mol/cm3. In dimensional values the cell
proliferation rate corresponds to the cell division frequency of the order of one division per day
or two. The diffusion coefficients for oxygen and cells are equal toDs = 2.5 · 10−5 cm2/s and
Dn = 2.5 · 10−9 cm2/s, respectively. Thus, we obtain the following non-dimensional parameters
of the problem:Dn = 0.01, Ds = 100, B = 0.05, P = 0.1, d = 0.1, Scrit = 0.3, ε = 100, q = 0.2,
k = 10, which will be referred to as a standard parameter set.

We suppose that an oxygen concentration is initially maximum everywhere:s = 1 and there
are no malignant cells of any type:n1 = n2 = m = 0 except a low number of proliferating
cells placed near the left border of the region under consideration. During initial growth period
malignant cells only divide due to high oxygen concentration in the tissue. When in the primary
tumour site a nutrient concentration drops below the critical valueScrit, migrating malignant cells
appears. There is a single source of oxygen on the right border, thus if migrating cells move
towards the left border they get into hypoxia zone and sooneror later die. Thereby, tumour spreads
(grows) to the nutrient source on the right border.

While the tumour spreading speed remains in fact constant from the beginning of growth,
tumour cell density decreases with time (see Fig. 1). It should be also noted, that active malignant
cells are located only in a thin layer on the tumour border. Ithappens due to oxygen depletion inside
the tumour below the valueScrit necessary for proliferation. Numerical simulation shows,that
oxygen concentration on the left borderσ is only slightly less than this critical value(Scrit−σ)ε ∼
1, so oxygen consumption inside the tumour is negligible. Tumour interior consists of necrotizing
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Figure 1: Overall tumour densityn1 + n2 +m for the standard parameter set at various moments
of growth: (1)T = 200, (2)T = 400, (3)T = 600.

cells and a rather dense necrotic core is observed near the primary site (x = 200) of malignant cell
inoculation.

In the course of time proliferating and migrating cells profiles become constant (autowave dis-
tribution) in the frame moving with the tumour growth speed.These profiles for the standard
parameter set are demonstrated in Fig. 2. It should be noted,that both proliferating and migrating
cell distributions are coupled. Perhaps, such a behavior occurs due to critical oxygen concentra-
tions for the transitions from proliferation to migration and backward being taken the same.

The other important problem solved via numerical computations is a dependence of the tumour
growth speedc on parameter values. Alteration of parametersDs, q, andk of the fourth equation
from the set (2.1) does not affect the tumour growth velocityc anyway. These parameters influence
only malignant cell spatial distributions, but not the tumour spreading rate. Numerical study also
demonstrates that tumour growth speed, like in the Kolmogorov-Petrovskii-Piskunov (KPP) or
Fisher equations, is strictly proportional to the square root of cell migration coefficientDn (c ∼
D

1/2
n ). The dependencies ofc on cell division rateB and cell death rated are not so trivial. They

are shown in Fig. 3. (In our simulations a variation of the parameterB was accompanied by
simultaneous alteration of the transition function amplitudesP so thatP = 2B.) The reason of
these dependencies is still unclear.

From our point of view, a very important relationship is observed between the tumour growth
speedc and the ratio of oxygen concentration in tissueSmax to the level necessary for proliferation
Scrit. This dependence is shown in Fig. 4. We remind that oxygen concentration in the tissue near
blood vesselsSmax is a scaling parameter equal to unity. Thus, one can see that,when the oxygen
concentration in tissue is far from the critical value required for cell proliferation, the tumour
growth speed is practically constant, while for the oxygen concentrations near this critical value
the tumour growth speed decreases dramatically.
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n1

n2

Figure 2: Proliferatingn1 (solid line) and migratingn2 (dashed line) cell densities profiles as a
function of coordinatex for the standard parameter set at the momentT = 700.

Figure 3: Dependencies of the tumour growth ratec on proliferation rateB (left) and death rated
(right) in logarithmic scale.
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Figure 4: Dependence of tumour growth ratec on inverse critical oxygen concentration1/Scrit for
the standard set of parameters.

5. Discussion

In this paper a mathematical model of infiltrative tumour growth with account of migration-
proliferation dichotomy is studied. The model adequately describes a constant rate of the tumour
linear size growth at the initial stage of neoplasm development and the necrotic region formation
in the tumour interior, observed in the experiments.

The evolution of malignant cell density profiles is investigated. It is shown that the initially
localized distribution asymptotically approaches the automodel solution traveling with a constant
speed. As long as this speed is proportional to the square root of cell migration coefficient, it
resembles the autowave solutions behavior of the Fisher equation. However, in contrast to the
Fisher model the velocity dependence on the malignant cell proliferation rate is more similar to the
pushed regime as formulated in [17]. We suppose, that in factthe autowave speed selection occurs
on the left asymptotic when the discriminant of the cubic polynomial equation (3.5) becomes
negative. This issue is the subject of our future study.

Numerical simulations of the model demonstrate that the tumour growth rate depends on the
tissue oxygen level in a threshold manner. If oxygen level isfar from the critical value required
for cell proliferation, tumour growth speed is insensitiveto oxygen decrease, while for oxygen
concentrations near this critical value the tumour growth speed decreases dramatically. This result
may be considered as additional evidence in favour of tumourantiangiogenic therapy. The aim of
this therapy is to create a hypoxic region around the tumour which, according to our model, should
slow down the tumour growth and even can completely stop it.

On the present stage, we limited our study to the case of equalthreshold oxygen concentrations
for the transitions from proliferation to migration and backwards. However, it is clear, that the
model should be studied for all parameter values of transition functions. It is supposed to be a
subject of our further investigations.
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