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Abstract. A mathematical model of infiltrative tumour growth is invgstted taking into account
transitions between two possible states of malignant :c@lteliferation and migration. These
transitions are considered to depend on oxygen level inestimid manner where high oxygen
concentration allows cell proliferation, while concemitva below a certain critical value induces
cell migration. The infiltrative tumour spreading rate degence on model parameters is obtained.
It is shown that the tumour growth rate depends on the tissygem level in a threshold manner.
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1. Introduction

Malignant tumours are one of the main causes of mortalityevetbped countries, so cancer re-
search and treatment has become increasingly importaimé imodern society. Significant efforts
are made to cope with cancer but the problem is still unsolvEidere is a large variability in
malignant neoplasms properties as there are more than {66 tf cancer, each having a lot of
subtypes. However, it has been hypothesized [10] thatynalidancers develop a common set of
basic characteristics: (1) self-sufficiency in growth silgn(2) insensitivity to anti-growth signals,
(3) evasion of apoptosis, (4) limitless replicative poi@n({5) sustained angiogenesis and (6) tissue
invasion and metastasis. By focusing on these common elespmeathematical modelling aims to
contribute to the prevention, diagnosis and treatmentisfabmplex disease.
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From mathematical point of view, one of the cancer hallmaaksunlimited proliferation, im-
plies a malignant cell number exponential growth with tifmevivo experiments angh vitro study
of multicellular tumour spheroids have demonstrated thatinitial exponential phase of growth
is followed by the logistic phase, which can be describedhgyGompertz equation [15]. This
transition occurs due to nutrient depletion in the tumoterior that stops proliferation and causes
necrosis. Thus, necrotic area can be found in the tumouercesile dividing cells are situated in
tumour boundary. Tumours with such a structure are refaode in a diffusion limited phase of
growth. In 1955 Thomlinson and Gray [21] proposed a mathmeadanodel for oxygen diffusion
and consumption in order to support experimental investigeof some bronchial carcinomata
types. In 1966 Burton [1] developed a diffusion model, whigsaribed both the distribution of
oxygen in a spherical tumour and the radius of the centraiotiecarea. It was demonstrated that
the tumour growth curve obtained in the model could fit a Gatzpen expression. Later many pa-
pers were published where the tumour cell mitotic index|{fan@tion rate) was found to directly
depend on nutrient (usually oxygen or glucose) concentrdg, 3, 8].

Malignant cell migration is another critical property whidefines tumour growth and pro-
gression. There are many types of tumours where malignélataze considered to be practically
immotile. Tumour grows like a compact object with the totalignant cell density close to the
maximum permissible cell density in tissue. Local change=eil population due to a division or
a cell loss result in the internal pressure variations, Wwimdurn induce migration and tumour en-
largement. Convection-dominated mathematical modelstenissue with a tumour is considered
as incompressible fluid and cell motion is determined by eotive field, are used to describe this
type of cancers [20, 22]. In models of such type there arerakgenvection equations describing
dynamics of different tumour cell types or phases and onearemreaction-diffusion equations for
nutrients and/or drugs.

Tumours with high individual motility of their cells are al&nown. Glioma is a striking exam-
ple of such tumours called infiltrative [4]. Tumours of thypé are characterized by a rather low
fraction of malignant cells in the tissue and an extensiveepration into the normal surroundings
provided by high individual cell motility. A general mathaircal description taking into account
both convective fluxes and individual cell motility was dieged by Gusev and Polezhaev [9].
Such type of models [14] is rather resource-consuming fomerical solution even in 2-D. Usu-
ally for infiltrative tumours with low relative cell densityne convective fluxes may be neglected
and thus the model can be reduced to several simple reatiffasion equations for cell densi-
ties, nutrients and/or mediator concentrations [18, 19jeSE models are able to describe linear
dependence of tumour size on time obtained in experimehtgad shown that the diffusion ap-
proximation for the transport process together with a libgigrowth yields an overestimation of
the overall growth rate [5]. Moreover, there are experiraktidta obtaineth vitro and clinical data
obtainedn vivowhich indicate an inverse correlation between motility analiferation of tumour
cell phenotypes [7]. It was called “a migration-prolifacet dichotomy”. Tumour cells prolifera-
tion and migration turned out to be mutually exclusive phgpes: the spreading suppresses cell
proliferation and vice versa. In 2006 lomin [13] formulat@igration-proliferation dichotomy in
the framework of the continuous time random walk transportcept. This approach based on
jump and waiting-time distributions has been used for nmlodgebf glioma cell invasion [6]. In
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that paper only stochastic switching between proliferatind migration was considered.

Another type of mathematical models useful for migratisahperation dichotomy investiga-
tion is discrete models. As they are based on a series offarleach cell, it is possible to translate
detailed biological processes (e.g. cell-cycle eventgyration, mutation pathways) into simple
rules for the model [16]. This approach is particularly usédr studying carcinogenesis, natural
selection, genetic instabilities and interactions of widlial cells with each other. On the other
hand, the computational cost increases rapidly with thebmirrof cells modelled, limiting these
methods in the spatial and temporal scales they can achie2610 Hatzikirou and co-authors [12]
used a lattice-gas cellular automaton model for investogaif migration-proliferation dichotomy
as a potential mechanism that may promote the progressamlfenign neoplasms to malignant
invasive tumours characterized by high migration rateghéir model a choice between the mi-
gration and either proliferation or apoptosis dependederndcal malignant cell density.

In this paper a deterministic reaction-diffusion modelrofasive tumour growth is considered
taking into account migration-proliferation dichotomy. malignant cell can either proliferate or
migrate. Transitions between these two stages (phengtgpesupposed to depend on oxygen
level in a threshold manner. High oxygen concentrationadloell proliferation, while concentra-
tion below a certain critical value induces cell migratidine mathematical model is investigated
both analytically and numerically.

2. The model

We consider a tumour as a colony of living and dead cells saded by normal tissue. Living
cells are also subdivided into two types: proliferating amdrating. A proliferating malignant cell
divides with a constant rate but are immotile, a migratingaa move in a random way but do not
divide. Transitions between these two populations depenoxggen (nutrient) concentration in
a threshold manner. Concentration above the critical vaduses cell proliferation, concentration
below this value causes migration. If migrating malignagitsccannot reach region with appropri-
ate oxygen level, they start to die. In the model, we take astmount that though a malignant cell
can divide under hypoxia, the oxygen shortage decrease®fatroliferation dramatically [11].
We consider a tumour growing in a normal tissue with rathesrp@pillary system, so oxygen
diffuses from blood vessels located sufficiently away fréwa tumour. Both proliferating and mi-
grating malignant cells consume oxygen, however, pratfeg malignant cells consume nutrient
much faster than migrating ones. Normal cells oxygen comsiom has been neglected. Normal
tissue surrounding the tumour is also supposed to hind#rerasancer cell motion nor prolifera-
tion. We restrict our analysis to a single spacial dimensiase. Formally, the model is based on
the following physical and biological assumptions:

e Atumour grows as a colony of proliferating, migrating, amhd cells with densities; , n.,
andm, respectively.

e Proliferating cells divide with a constant raleand in the case of low oxygen concentration
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s pass into migration state with the raig(s). For sufficiently small oxygen concentration
Py (s) should exceed, else this transition will not occur.

e Migrating cells move randomly with coefficieri?,, and in the regions with high oxygen
level can be again recruited into proliferation with theerBi(s).

¢ Migrating malignant cells die with the constant rdte

e Transitions between proliferating and migrating statebamd vice versa depend on oxygen
concentration in a threshold manner.

e Oxygen is considered to be a crucial nutrient for tumour ghouis distribution is governed
by diffusion D, while consumption is governed by living malignant cellstbproliferating
and migrating. We assume that cells consume oxygen witht@ohsate if its concentration
is not too small.

Using these assumptions the governing equations can kenvais follows:

0

% = Bnj — Pi(s)ny + Pa(s)na,

0 0

% - DnaTR; + Py(s)n1 — Pa(s)ng — dny,

a (2.1)
0s 0%s S

— D,— K :

ot Ox? qs—i—s*( n+ o)

The transition rate®’ (s) and P(s) are step-like functions with a common critical oxygen level
Serit, Width 1/ and amplitudeP:

Pi(s) = Pl — tanh[(; — Scrit)s]’ Pys) = Pl — tanh[(zScrit — 5)5]. 2.2)

So, oxygen concentrations which deviate frém, over the values of the order @f« corre-
spond to transition functions extreme values( P).

In (2.1) the third equation decouples from the remainingesys The dead cells density profile
determines the position of necrotic area inside the tumbugrefore it does not affect the tumour
spreading, which is governed only by the dynamics of pradiieg, migrating malignant cells and
nutrient concentration, and thus in our further analysisowg this equation in the system (2.1).

Also we take into account that oxygen concentration doedatiotvell below the valueS,.;;
when all the cells die and oxygen consumption ceases. Thus,assume that* < S.;; then the
ratio s/(s + s*) in the last equation of (2.1) does not significantly deviaterf unity and in our
further analysis we omit it.
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At the avascular stage a tumour is supposed to have a sghesyametric shape. However,
if a tumour radius is much greater than the characteriséiteséor which cell density and nutrient
concentration distributions change significantly, a ptageeometry can be considered. By our
assumption that the tumour grows in the tissue where oxygedominantly diffuses from the
blood vessels located far away from the tumour, the systeft) (an be solved in an infinite
region. Thus, we supplement equations (2.1) with the fahgviboundary conditions:

ny = O, ny = 0,
ny =0, T — —00, ng =0, r — 4o00. (2.3)
S = 07 s = Smax7

3. Travelling wave solutions

We seek the solution to (2.1) in the form of a wave travellindha constant shape and spedde.
an autowave). Therefore, the governing equations (2. Iiealeced to a set of ordinary differential
equations by introducing the travelling coordinate fragme = — ct:

0
Cﬁifl + Bny — Pi(s)ny + Pa(s)ng = 0,
0’n on
nW; + 06_52 + Pi(s)ny — Py(s)ng —dny = 0, (3.1)
82 ds
— K = 0
f + Caf ( ny + nz)
with the following boundary conditions:

ny =0, ny =0,
ny = 0, & — —o0, ny = 0, & — 4o0. (3.2)
s = o, s =1,

Hereo corresponds to the limiting constant value of the substrateentration fo€ — —oo. On
the first step we consider the asymptotic behavior of thetisoisi to (3.1) for{ — +oo. In order
to do this we linearize equations (3.1) near the values (@&)h are stationary points of (3.1) and
obtain two sets of ODEs with constant coefficients

-
calg + Bn; — Pi(o)n; = 0,
0?ny ony
n az; + CaL; + Pi(o)ny —dn, = 0, (3.3)
0?s~  0s”
s 052 +ca—€—q(Kn1 +n2) = 0
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and

+
caa% + Bn{ + Pny = 0,
2, + +
D, aag; + caaig — Pnf —dn} = 0, (3.4)
D?st  Ost

According to the linear differential calculus the solusdo these problems are sought in the form
(n1, na, N, 5, s¢)” ~ k™ exp(p*€) which reduces linear differential equations sets to eiglerey
problems for coefficientg* as eigenvalues and constant vecliofsas eigenvectors. Eigenvalues
u* indicate the rate of solutions exponential convergenceefdence) to the boundary values
(3.2) as¢ — +oo and superscripts ‘+’ and ‘-’ refer to the linearized problem+oco and —oc,
respectively.

For the cas&€ — +oo it appears that the linearized set of ODEs (3.4) has thragisob
with the rate of exponential convergence to the boundarglitions given byu{ = —B/c, u3 =
—c/Ds andp = (—c — /¢ +4(P +d)D,)/2D,,, one solution unbounded fgr— +oc with
the rate of exponential divergengg = (—c + +/c® +4(P +d)D,)/2D,,, and a single solution
with a zero eigenvaluegys = 0, of exponential growth. It can be shown that the stationaintp
{S1:n; =0,ny, =0,s =1} of (3.1) is a saddle-node.

In the same manne§, — —oo we derive the set of ODEs (3.3) linearized near the boundary
conditions (3.2) for the case. Two solutions can be easiydo one with zero eigenvalyg =
0 and the unbounded one corresponding:jo = —c/D;. Three others are roots of the cubic
polynomial:

cDypi® 4+ (BD,, + ¢ — Py(0))* + (B —d — P)y— Bd — BPy(c) +dP,(0) =0.  (3.5)

A localized solution of equations (3.1), (3.2) exists ofilgtileast one root of equation (3.5) is
a real positive number. Further analytical treatment isiibes only for the caséS..;; — o)e > 1.
Then equation (3.5) is reduced to the following form:

(cpt+ B — P)(Dyp* + cpu — d) = 0. (3.6)

Therefore, we get one more unbounded solution with= (—c — \/¢? + 4dD,,)/2D,, and two
solutions with exponential convergence coefficients to libandary conditiong,;, = (—c +
V2 +4dD,,) /2D, andu; = (P — B)/c. In this case stationary poiftS1 : n; = 0,ny =
0,s = o} of (3.1) is also a saddle-node. It should be noted that susghr@stimation does not
impose any significant restriction (besides 0) on the autowave speed.
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4. Numerical simulations

Equations (2.1) are solved numerically in a sufficienthgi&adomain, so that the boundary con-
ditions (2.3) imposed at the edge points of the space gridotlanfluence the solution. For our
numerical algorithm we use the splitting method with respeg@hysical processes. Initially, we
solve ODEs set which describes cell proliferation, transg and death processes as well as nu-
trient consumption using the fourth order Runge-Kutta atgor. As a next step, mass transfer
equations for oxygen and cells are solved with the Crank4{slicomethod of the second order
approximation in both space and time.

Any mathematical model of biological system depends ctiycta parameter values choice.
The parameters vary drastically depending on tumour tymalization, progression, etc. Parame-
ters choice in the model is determined by the objective wisicather a qualitative characterization
of an infiltrative tumour growth considering migration-pferation dichotomy, than a quantitative
description of any specific tumour. Therefore, the parametieies are taken in the experimentally
observable range, and they are not related to a certain kioa@ncer. The other important limita-
tion on parameters is that their values are chosen in sucly éhatthe tumour cell density remains
substantially smaller, than the maximal possible valueis Témture is typical for the infiltrative
type tumour.

Equations (2.1) are already given in a non-dimensional formorder to estimate the cor-
responding parameters we take characteristic scales efdimd length:7;, = 10*s andL =
5 - 1072 cm, respectively. The cell density is scaledrnap,, = 107 cells/cn? (maximal cell den-
sity is the same for both proliferating and migrating celghile the oxygen concentration in the
tissue near blood vessels is supposed t&.he = 10~"mol/cn?. In dimensional values the cell
proliferation rate corresponds to the cell division fregeye of the order of one division per day
or two. The diffusion coefficients for oxygen and cells area@go D, = 2.5 - 10~° cm? /s and
D, = 2.5-107? cm?/s, respectively. Thus, we obtain the following non-dimenal parameters
of the problem:D,, = 0.01, D, = 100, B = 0.05, P =0.1,d = 0.1, Se;it = 0.3, = 100, ¢ = 0.2,

k = 10, which will be referred to as a standard parameter set.

We suppose that an oxygen concentration is initially maxmaverywhere:s = 1 and there
are no malignant cells of any typei; = n, = m = 0 except a low number of proliferating
cells placed near the left border of the region under congiaa. During initial growth period
malignant cells only divide due to high oxygen concentratiothe tissue. When in the primary
tumour site a nutrient concentration drops below the @aitraluesS.,;;, migrating malignant cells
appears. There is a single source of oxygen on the right hotfues if migrating cells move
towards the left border they get into hypoxia zone and soonkater die. Thereby, tumour spreads
(grows) to the nutrient source on the right border.

While the tumour spreading speed remains in fact constam tte beginning of growth,
tumour cell density decreases with time (see Fig. 1). It khbe also noted, that active malignant
cells are located only in a thin layer on the tumour borddratipens due to oxygen depletion inside
the tumour below the valug.,;; necessary for proliferation. Numerical simulation shotinst
oxygen concentration on the left bordeis only slightly less than this critical valué.,i; — o)e ~
1, so oxygen consumption inside the tumour is negligible. duninterior consists of necrotizing
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Figure 1: Overall tumour density; + n, + m for the standard parameter set at various moments
of growth: (1)7" = 200, (2) T" = 400, (3) T" = 600.

cells and a rather dense necrotic core is observed nearithargrsite ¢ = 200) of malignant cell
inoculation.

In the course of time proliferating and migrating cells gesfibecome constant (autowave dis-
tribution) in the frame moving with the tumour growth speethese profiles for the standard
parameter set are demonstrated in Fig. 2. It should be nibtgithoth proliferating and migrating
cell distributions are coupled. Perhaps, such a behaviaureadue to critical oxygen concentra-
tions for the transitions from proliferation to migrationcdabackward being taken the same.

The other important problem solved via numerical compatetis a dependence of the tumour
growth speed on parameter values. Alteration of parametBts ¢, andk of the fourth equation
from the set (2.1) does not affect the tumour growth velocapyway. These parameters influence
only malignant cell spatial distributions, but not the tumspreading rate. Numerical study also
demonstrates that tumour growth speed, like in the Kolmog®&etrovskii-Piskunov (KPP) or
Fisher equations, is strictly proportional to the squai g cell migration coefficientD,, (¢ ~
D,l/Q). The dependencies ofon cell division rateB and cell death rateé are not so trivial. They
are shown in Fig. 3. (In our simulations a variation of thegoaeter B was accompanied by
simultaneous alteration of the transition function anyolésP so thatP = 2B.) The reason of
these dependencies is still unclear.

From our point of view, a very important relationship is otveel between the tumour growth
speed: and the ratio of oxygen concentration in tissijg to the level necessary for proliferation
Sait- This dependence is shown in Fig. 4. We remind that oxygenemdration in the tissue near
blood vessel$,,.. is a scaling parameter equal to unity. Thus, one can seexhat) the oxygen
concentration in tissue is far from the critical value reqdifor cell proliferation, the tumour
growth speed is practically constant, while for the oxygenaentrations near this critical value
the tumour growth speed decreases dramatically.
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Figure 2: Proliferating»; (solid line) and migrating:, (dashed line) cell densities profiles as a
function of coordinate: for the standard parameter set at the moniént 700.
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Figure 3: Dependencies of the tumour growth rate proliferation rateB (left) and death ratd
(right) in logarithmic scale.
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Figure 4: Dependence of tumour growth raten inverse critical oxygen concentratiofS,.,;; for
the standard set of parameters.

5. Discussion

In this paper a mathematical model of infiltrative tumourvgito with account of migration-
proliferation dichotomy is studied. The model adequat@&galibes a constant rate of the tumour
linear size growth at the initial stage of neoplasm develepinand the necrotic region formation
in the tumour interior, observed in the experiments.

The evolution of malignant cell density profiles is inveatgd. It is shown that the initially
localized distribution asymptotically approaches theomddel solution traveling with a constant
speed. As long as this speed is proportional to the squateofcell migration coefficient, it
resembles the autowave solutions behavior of the Fisheatiesqu However, in contrast to the
Fisher model the velocity dependence on the malignant oaif@ration rate is more similar to the
pushed regime as formulated in [17]. We suppose, that irtli@chutowave speed selection occurs
on the left asymptotic when the discriminant of the cubicypolmial equation (3.5) becomes
negative. This issue is the subject of our future study.

Numerical simulations of the model demonstrate that theotungrowth rate depends on the
tissue oxygen level in a threshold manner. If oxygen levéhisdrom the critical value required
for cell proliferation, tumour growth speed is insensitteeoxygen decrease, while for oxygen
concentrations near this critical value the tumour grovsesl decreases dramatically. This result
may be considered as additional evidence in favour of turaatiangiogenic therapy. The aim of
this therapy is to create a hypoxic region around the tumduichy according to our model, should
slow down the tumour growth and even can completely stop it.

On the present stage, we limited our study to the case of ¢opeshold oxygen concentrations
for the transitions from proliferation to migration and ka@ards. However, it is clear, that the
model should be studied for all parameter values of tramsitiinctions. It is supposed to be a
subject of our further investigations.
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