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Computation and analysis of optimal disturbances of
periodic solution of the hepatitis B dynamics model
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Abstract — Optimal disturbances of the periodic solution of the hepatitis B dynamics model cor-
responding to the chronic recurrent form of the disease are found. The dependence of the optimal
disturbance on the phase of periodic solution is analyzed. Four phases of the solution are considered,
they correspond to clinically different periods of development of the immune response and severity of
the disease, namely, activation of antiviral immune reactions, attenuation of reactions, peak and min-
imum viral load. The possibility of using optimal disturbances to exit the domain of attraction of the
considered periodic solution using minimal impact is studied. The components of disturbances that
may underlie the phenomenon of spontaneous recovery from chronic hepatitis B observed in clinical
practice are identified.
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Nowadays, one of the widely used theoretical approaches to development of treat-

ment methods for chronic infectious diseases is the use of mathematical models of
the disease dynamics and immune response represented by systems of delay dif-
ferential equations. Stable periodic solutions of such models can be interpreted as
chronic forms of the disease. Therefore, in order to study possible ways of treating
chronic infections, it is necessary to find multicomponent impacts leading the sys-
tem out of a stable periodic solution. In [8], the authors proposed to use the so-called
optimal disturbances as such impacts.

In this paper, we consider a model of the hepatitis B virus infection dynam-
ics being a calibrated version of the Marchuk–Petrov antiviral immune response
model represented by a system of 10 nonlinear delay equations [1, 13]. To study
this model, the authors used algorithms and software developed by them earlier
to compute stationary and periodic solutions, study their stability, and trace them
along the parameters of the system [5–7, 10, 16], and compute optimal disturbances
for periodic solutions [8, 9]. This technique was used to find the values of paramet-
ers of the hepatitis B dynamics model, at which it has a stable periodic solution with
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a least period of approximately 150 days, corresponding to the chronic form of the
disease, and a stable stationary solution with zero viral load, corresponding to the
state of a healthy organism. Technically, a periodic solution was sought in a neigh-
borhood of an unstable stationary solution such that the leading (with the maximum
real part) eigenvalue of the system linearized with respect to this stationary solution
has a non-zero imaginary part.

One of the main goals of this paper is to study the dependence of the optimal
disturbances on the solution phase. To do that, we computed and compared optimal
disturbances corresponding to the moments of maximum and minimum viral loads
of the periodic solution, and also to the moment of increase in the viral load at its
average value, which corresponds to development of infection and activation of the
immune response, and to the moment of decrease in the viral load at its average
value which corresponds to elimination of infection and decrease in the immune
response. The possibility to exit the domain of attraction of a stable periodic solution
using optimal disturbances is also studied as well as the possibility of transition from
a stable periodic solution corresponding to the chronic form of hepatitis B to a stable
stationary solution corresponding to the state of a healthy organism.

The paper has the following structure. Section 1 briefly describes the Marchuk–
Petrov mathematical model of antiviral immune response. In Section 2, we recall
the definition of a disturbance of a stable periodic solution of a system with con-
stant delays optimal at a given time moment introduced by the authors in [8]. The
algorithms for computing such a disturbance proposed in [8, 9] are briefly described
here. In Section 3, we present and discuss the results of the analysis of optimal dis-
turbances of a stable periodic solution for the hepatitis B dynamics model. Section 4
summarizes the results of the paper.

1. Marchuk–Petrov model
In this paper we use the Marchuk–Petrov mathematical model of antiviral immune
response proposed in [1, 13] and studied in [14]. The model is a system of 10 non-
linear differential equations with five constant delays written as

du
dt

(t) = F (u(t),u(t− τ1), . . . ,u(t− τ5)) (1.1)

where 0 < τ1 < .. . < τ5 are delays, u is a 10-component vector function of model
variables, and the vector function F (v0,v1, . . . ,v5) of vector arguments v0, v1,. . . ,
v5 is continuously differentiable in the neighborhood (u(t),u(t− τ1), . . . ,u(t− τ5))
for all solutions u(t) considered below and fixed time points t.

The system of equations of the model was given in [7] and describes the rate of
change in the concentration of the following populations over time: viral particles
Vf ; virus-infected target organ cells CV ; destroyed target organ cells m; antigen-
presenting cells (macrophages) MV ; CD4+ T-helper lymphocytes of cellular im-
munity (Th1) HE ; CD4+ T-helper lymphocytes of humoral immunity (Th2) HB;
CD8+T-killer lymphocytes E destroying virus-infected cells; B-lymphocytes B;
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Table 1. Varied parameters of the model.

Parameter Biological meaning Initial/final value

ρF
Rate constant of antibody

1.7 ·108/8.5 ·106 molecules/cell ·days−1
synthesis by plasma cells

bm

Rate constant for destruction
0.068/0.052 days−1of infected hepatocytes due to

cytopathicity of viruses

ν
Rate constant of viral particle

83/27.7 particles/cell ·days−1
secretion by infected hepatocytes

γMV
The rate constant of antigenic

1.6 ·10−11/2.5 ·10−11 (particles/ml)−1 ·days−1
stimulation of macrophages

bCE

The rate constant of destruction
1.1 ·10−6/1.1 ·10−5 (cells/ml)−1 ·days−1of infected hepatocytes by effector

T-lymphocytes

bE
p

The rate constant of stimulation
4.1 ·10−9/4.1 ·10−8 (cells/ml)−2 ·days−1

of effector T-lymphocytes

γV F
The rate constant of neutralization

5.0 ·10−10/5.0 ·10−9 (molecules/ml)−1 ·days−1
of viral particles by antibodies

plasma cells P producing antibodies; antibodies F neutralizing viruses. The fol-
lowing dimensions were used for the variables: particles/ml for Vf , molecules/ml
for F , cells/ml for the remaining variables. In the numerical experiments described
in Section 3, we used the parameter values from [7] corresponding to acute hepat-
itis B with the exception of some parameters the values of which were varied when
searching for a stable periodic solution. The biological meaning of the parameters
being varied and their initial and final values are listed in Table 1.

2. Computation of optimal disturbances

Let the continuously differentiable vector function ϕ be a periodic solution to sys-
tem (1.1) and T be its least period. We are interested in continuous solutions to the
initial value problem for the following equations linearized with respect to ϕ:

dw
dt

(t) = L0(t)w(t)+
5

∑
j=1

L j(t)w(t− τ j) (2.1)

where

L j(t) =
∂F

∂v j
(ϕ(t),ϕ(t− τ1), . . . ,ϕ(t− τ5))

are real square matrices of order 10, and the initial value is taken as a continuous
vector function determined in the interval −τ5 6 t 6 0.

For the vector of variables of system (2.1) introduce the following family of
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local norms at the time moment t:

‖w‖D,ρ,t =

( t∫
t−τ5

(
‖Dw(ξ )‖2

2 +ρ‖D dw
dξ

(ξ )‖2
2

)
dξ

)1/2

(2.2)

where D is a given positive definite diagonal matrix of order 10, ‖ · ‖2 is the second
(Euclidean) vector norm, ρ is a nonnegative parameter. Below we use the L2-norm
‖w‖L2 = ‖w‖D,0,t and the W 1

2 -norm ‖w‖W 1
2
= ‖w‖D,1,t .

The optimal disturbance of the periodic solution ϕ to system (1.1) at the time
moment t∗ > 0 is the solution to linearized system (2.1) providing the maximal
amplification of local norm (2.2) of the solution at the time moment t∗ in comparison
with its initial value, i.e., such nonzero w = wopt,t∗ that maximizes the value

‖w‖D,ρ,t∗

‖w‖D,ρ,0
. (2.3)

By Q we denote the subspace of functions [−τ5,0]→ R10 containing functions
taken as initial ones in construction of the optimal disturbance. Following [8, 9,
12], for Q we take the linear span of a finite set of basis functions. Such a choice
guarantees the existence of the maximum value of (2.3).

A basic method was proposed in [8] for computation of disturbances of a peri-
odic solution to a time-delay system optimal at a given node tk > 0 of the uniform
grid

{t j = δ j : j =−mp +1,−mp +2, . . .}
constructed in the semi-infinite interval (−τp,∞) with the step δ > 0, and [9] con-
tains its modification using the Lanczos method. Here and below, m j = [τ j/δ ] is a
discrete analogue of the delay τ j, and p is the number of delays. These methods are
based on time discretization of system (2.1) by the implicit second order scheme
BDF2 [4]. The computation of the optimal disturbance is reduced to computation
of the right singular vector of the matrix of transition from the node t1 to the node
tk corresponding to its maximal singular value. In the basic method, this vector is
computed using full singular value decomposition [3], the modification of the basic
method uses the Lanczos method for this [15].

We normalize the obtained optimal disturbance in the local L2-norm and use it
to perturb the periodic solution of original nonlinear system (1.1) taking the initial
value

u(t) = ϕ(t)+ εw̃opt,t∗(t) (2.4)

for −τp 6 t 6 0, where w̃opt,t∗ means the optimal disturbance normalized in the in-
dicated norm and ε is a real parameter. Varying the absolute value of this parameter,
we can increase or decrease the initial disturbance. Depending on the sign of the
parameter, a given component of the solution at t = 0 begins either to increase or
decrease in comparison with the same component of the undisturbed periodic solu-
tion with the growth of t.
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3. Results
This section describes the results of studying the dependence of optimal disturb-
ances of a stable periodic solution on the solution phase and an analysis of the pos-
sibility to exit the domain of attraction of a stable periodic solution using optimal
disturbances.

Using the methods for computations, analysis of stability and dependence of
stationary and periodic solutions of time-delay systems on the parameters of the
model developed earlier [5–7, 10, 16], the values of parameters of the hepatitis B
dynamics model, at which it has a stable periodic solution corresponding to the
chronic form of the disease, and a stable stationary solution with zero viral load,
corresponding to the state of a healthy organism were obtained. Namely, for the fi-
nal values of the parameters from Table 1, the model has three stationary solutions
and the values of state variables from these solutions are given in Table 2. We note
that stationary solution I is stable and corresponds to the state of healthy organism,
whereas stationary solutions II and III are unstable. The leading eigenvalues of the
systems linearized with respect to stationary solutions II and III are 0.003±0.047i
and 0.006, respectively. If the stationary solution is unstable and the leading eigen-
value of the system linearized relative to it has a nonzero imaginary part, then a
stable periodic solution may exist in a neighborhood of such stationary solution.
Only stationary solution II satisfies this condition. Using the method proposed in
[6], a stable periodic solution was computed in a neighborhood of this stationary
solution, it is shown in Fig. 1. The minimum and maximum values of variables in
this solution are given in Table 3.

3.1. Dependence of the optimal disturbance on the phase of the periodic solu-
tion

As the subset of functions Q from which initial functions were taken for com-
putation of optimal disturbances was taken as the linear span of 60 functions
qualitatively approximating the behavior of drugs within the framework of single-
compartment and two-compartment pharmacokinetic models describing the absorp-
tion and elimination of drugs, i.e.,

ψ(t, t j) =

{
0, −τ5 6 t < t j

exp{−3(t− t j)}− exp{−9(t− t j)}, t j 6 t 6 0

where j =−m5 +[im5/60]+1, i = 0,1, . . . ,59. The grid step δ was taken equal to
5 · 10−3, which resulted in m5 = 600. The optimal disturbances were computed in
the W 1

2 -norm. This provided a sufficiently smooth dependence of the initial value
of the optimal disturbance on time [2]. We took the diagonal matrix with diagonal
entries equal to values inverse to the components of stationary solution II whose
neighborhood contained the considered periodic solution as D.

To analyze the dependence of the optimal disturbance of a periodic solution
on the solution phase, consider the disturbances optimal at the time moment equal
to the least period T assuming that the solution is in the considered phase at time
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Figure 1. Periodic solution ϕ(t) with the least period T = 150.24. Colour code: blue circle
— the remission phase Vf = Vmin, red circle — the phase of exacerbation Vf = Vmax,
turquoise — the phase Vf = (Vmax +Vmin)/2 with increasing Vf , violet — the phase
Vf = (Vmax +Vmin)/2 with decreasing Vf .

t = 0. We consider disturbances for the following four phases of the solution: those
with the minimum viral load Vf = Vmin, with the maximum viral load Vf = Vmax,
for Vf = (Vmax +Vmin)/2 with increasing Vf , and for Vf = (Vmax +Vmin)/2 with
decreasing Vf (coloured circles in Fig. 1). Denote these disturbances by wmin(t),
wmax(t), wup(t), and wdown(t), respectively, and note that the selected time points
correspond to the stages of remission, exacerbation, development of infection and
activation of the immune response, and elimination of infection and reduction of
the immune response, respectively. The computed disturbances are shown in Fig. 2,
and a component-by-component comparison of the ratio of norms of the computed
disturbances to the norm of the periodic solution are shown in Fig. 3.

The analysis of curves presented in Fig. 2 and diagrams shown in Fig. 3 res-
ults in the following conclusions. For the phases of remission and exacerbation, the
amplitude of the optimal disturbance for all variables except for HB is less than for
the phases of development and elimination of infection. At the same time, the dis-
turbance of the variables CV ,MV ,HE ,E have a multidirectional character for these
two groups of phases of an infectious disease.

The optimal disturbance for the phase of minimum viral load wmin(t) signific-
antly changes all components of the state vector except for the B-cellular immune
response (components HB, B, P, F) and the proportion of destroyed hepatocytes
(component m). The optimal disturbance for the maximum viral load phase wmax(t)
significantly has the same structure and qualitative characteristics as for the min-
imum viral load phase. However, there is some quantitative difference between the



Computation and analysis of optimal disturbances 7

Figure 2. Disturbances optimal in the W 1
2 -norm and normalized in the L2-norm for different stages

of infection. Blue line is for the remission V f = Vmin, red line is for the stage of exacerbation V f =
Vmax, turquoise line is for the moment V f = (Vmax +Vmin)/2 with increasing V f , purple line is for the
moment V f = (Vmax +Vmin)/2 with decreasing V f .
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Figure 3. Component-by-component ratio of the ‖ ·‖I,0,t norm of the disturbance to the ‖ ·‖I,0,t norm
of the periodic solution, where I is the identity matrix. Red bars correspond to a variable increasing
relative to the periodic solution, blue bars are for decreasing ones.
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Table 2. Values of model variables in stationary
solutions. I II III

V f 0 2.284 ·108 2.324 ·107

CV 0 3.538 ·106 4.565 ·105

m 0 1.721 ·106 1.778 ·105

MV 0 2.855 ·103 2.905 ·102

HE 602 6.893 ·102 6.100 ·102

E 602 1.910 ·103 5.853 ·102

HB 60.2 6.893 ·101 6.099 ·101

B 602 6.437 ·102 6.056 ·102

P 0.259 0.263 0.259
F 5.117 ·107 6.060 ·106 2.892 ·107

Table 3. Maximum and minimum values of variables in the peri-
odic solution. MIN MAX

V f 1.539 ·108 2.751 ·108

CV 2.442 ·106 4.222 ·106

m 1.120 ·106 2.172 ·106

MV 1.924 ·103 3.438 ·103

HE 6.584 ·102 7.100 ·102

E 9.234 ·102 3.651 ·103

HB 65.84 71.00
B 6.295 ·102 6.532 ·102

P 0.262 0.264
F 5.159 ·106 8.427 ·106

components of the optimal disturbances wmin(t) and wmax(t) in terms of viral load
(Vf ), the number of infected cells (CV ), activated macrophages (MV ), and the T-cell
immune response (HE , E). The remaining components of the state vector change
quantitatively in a similar way or biologically insignificantly.

The optimal disturbance for the phase of infection development and activation
of the immune response wup(t) significantly (>1%) changes all components of the
state vector except for the B-cellular immune response (components HB, B) and the
proportion of destroyed hepatocytes (component m), the relative change of which is
less than 1%. The same pattern holds with respect to the optimal disturbance for the
phase of infection elimination and reduction of the immune response wdown(t). The
structure of the components of the optimal disturbances wup(t) and wdown(t) differs
significantly in the values of the number of infected cells (CV ) and the concentration
of cytotoxic immune response cells (E). The other components of the state vector
change quantitatively in a similar way or biologically insignificantly.

3.2. Transition of the system from a stable periodic solution

The computed optimal disturbances wmin(t), wmax(t), wup(t), and wdown(t) were also
used to analyze the possibility of transition of the system from the obtained stable
periodic solution corresponding to the chronic form of hepatitis B to the infection-
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free stable stationary solution I with Vf = 0 using these disturbances. It should be
noted that in all four cases it was possible to make the transition, that is, to achieve
the elimination of infection both with the help of an optimal disturbance taken with
a negative weight that lowers the viral load, which can be interpreted as treatment
with antiviral drugs, and with the help of the same disturbance taken with a positive
weight that increases the viral load, which can be interpreted as an exacerbation-
type of treatment.

The initial values of the perturbed periodic solution in the interval [−τ5,0] for
each of the four disturbances taken with positive (red lines) and negative weights
(blue lines) are shown in Figs. 4, 6, 8, and 10. The transitions resulting from dis-
turbance by each of the four perturbations are shown in Figs. 5, 7, 9, and 11. Fig-
ures 4 and 6 show that for the phases of remission and exacerbation the disturb-
ances wmin(t) and wmax(t) taken with negative weight suppress viral reproduction,
suppress infection of target cells, and enhance the immune response, while the same
disturbances taken with positive weight enhance viral reproduction and weaken the
immune response. However, as can be seen from Figs. 8 and 10, for the phase of
infection development and activation of the immune response and for the phase of
infection reduction and weakening of the immune response, the disturbances wup(t)
and wdown(t) taken with positive weight (exacerbation of infection) are characterized
by decrease in the intensity of infection and destruction of target cells accompanied
by an increase in T-cell immune response.

Figures 4 and 5 show that for successful transition to the infection-free state
using the optimal disturbance for the phase of minimal viral load wmin(t), this dis-
turbance can be used with the same absolute magnitude both for the negative weight
reducing the viral load and the positive weight increasing the viral load. Figures
6 and 7 show that for successful transition using the optimal disturbance for the
phase of maximal viral load wmax(t), the negative weight must be taken two and a
half times greater in absolute value than the positive weight. For successful trans-
ition using optimal disturbance for the phase of increasing viral load at its average
value wup(t), the positive weight must be taken twice as much in absolute value as
the negative weight as shown in Figs. 8 and 9. And for successful transition using
the optimal disturbance for the phase of decreasing viral load at its average value
wdown(t), this disturbance can be taken with negative and positive weights of the
same absolute magnitude as presented in Figs. 10 and 11. Notice that the optimal
disturbance for the phase of minimal viral load in the amplification mode and the
suppression mode of viral infection leads to elimination of infection in 300 and 450
days, respectively. The optimal disturbance for the phase of maximal viral load in
the mode of amplification of viral infection leads to elimination of infection in sig-
nificantly shorter time, about 350 days, than in the mode of suppression of viral
infection which requires about 700 days. Optimal disturbances for the phases of
increasing viral load at its average value and of decreasing viral load at its average
value lead to elimination of infection in about the same time. In virus infection amp-
lification mode, this happens in about 450 days, and in virus suppression mode in
about 700 days. Thus, the best result in terms of the minimality of the local norm of
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Figure 4. Initial values of the periodic solution (black line) and its disturbed values at the stage of
remission with the weight ε =−0.5 (blue line) and with the weight ε = 0.5 (red line).

Figure 5. The periodic solution ϕ(t) (black line), its disturbed values at the stage of remission with
the weight ε = −0.5 (blue line), with the weight ε = 0.5 (red line), and stationary solution I with
V f = 0 (green line).
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Figure 6. Initial values of the periodic solution (black line) and its disturbed values at the stage of
exacerbation with the weight ε =−0.8 (blue line) and with the weight ε = 0.3 (red line).

Figure 7. The periodic solution ϕ(t) (black line), its disturbed values at the stage of exacerbation
with the weight ε =−0.8 (blue line), with the weight ε = 0.3 (red line), and stationary solution I with
V f = 0 (green line).
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Figure 8. Initial values of the periodic solution (black line) and its disturbed values at the stage of
infection development and activation of the immune response with the weight ε = −0.85 (blue line)
and with the weight ε = 1.5 (red line).

Figure 9. The periodic solution ϕ(t) (black line), its disturbed values at the stage of infection devel-
opment and activation of the immune response with the weight ε =−0.85 (blue line), with the weight
ε = 1.5 (red line), and stationary solution I with V f = 0 (green line).
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Figure 10. Initial values of the periodic solution (black line) and its disturbed values at the stage of
infection elimination and decreased immune response with the weight ε =−0.85 (blue line) and with
the line ε = 0.8 (red line).

Figure 11. The periodic solution ϕ(t) (black line), its disturbed values at the stage of infection elim-
ination and decreased immune response with the weight ε =−0.85 (blue line), with the weight ε = 0.8
(red line), and stationary solution I with V f = 0 (green line).
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the initial disturbance and the time of elimination of infection could be achieved us-
ing the optimal disturbance for the phase of maximum viral load taken with positive
weight, which increases the viral load and weakens the components of the immune
response.

4. Conclusion
The dependence of optimal disturbances of a stable periodic solution of the hep-
atitis B dynamics model corresponding to the chronic form of the disease on the
solution phase was studied in the paper. For this purpose, optimal disturbances com-
puted for four different phases of the periodic solution were considered. Those are
phases of minimum viral load, maximum viral load, infection development, and in-
fection elimination. It was shown that for all four phases of infection and immune
response the optimal disturbance significantly changes all components of the state
vector except for the B-cell immune response. It was also shown that the structure
of the optimal disturbance for the phases of minimum and maximum viral load is
the same. However, it differs qualitatively from the structure of optimal disturbance
for the phases of development and elimination of infection in the following com-
ponents: infected cells, activated macrophages, Type 1 T-helper cells, and cytotoxic
T-lymphocytes. At the same time, the computed relative deviations of optimal dis-
turbances from the components of the periodic solution do not exceed 80%, which
allows us to conclude that periodic solutions corresponding to chronic active hep-
atitis with the viral load level greater than 108 virions/ml can be accompanied by
spontaneous recovery within the framework of the multiplicative noise model ex-
amined earlier in [11]. Indeed, the required relative variations of the components of
the viral load, infected cells, activated macrophages, Type 1 T-helper cells, cytotoxic
T-lymphocytes, plasma cells, and antibodies vary from 1 to 100% according to the
structure of the component-by-component ratio of the disturbance norm to the norm
of the periodic solution.

Moreover, it was shown that the transition from a stable periodic solution cor-
responding to the chronic recurrent form of hepatitis B to a stable stationary solution
with zero viral load corresponding to the state of a healthy organism is possible with
the use of optimal disturbances computed for the four phases of the periodic solu-
tion described above. In all four cases, the transition could be performed both by
reducing the viral load, which can be interpreted as treatment with antiviral drugs,
and by increasing the viral load, which can be interpreted as treatment by exacer-
bation. The best result in terms of minimization of the magnitude of impact on the
system and the time required for elimination of infection can be achieved by using
an exacerbation-type of treatment for the phase of the maximal viral load.

The periodic solution studied here is characterized by a small amplitude of vari-
ation of the model variables. Further research may be related to consideration of
other bifurcation parameters and the study of their effect on the amplitude and
period of oscillating solutions observed in clinical practice for viral hepatitis B [11]
and the study of possibility of using optimal disturbances for design of combination
type therapies.
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