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Multi-physics approach to model the lymph transport
in the murine immune system

D. S. Grebennikova bc, B. D. Pivovarova d, R. S. Savinkova be, G I. Lobovf,
and G. A. Bocharov∗a be

Abstract — We formulate a compartmental model of the murine lymphatic system with the trans-
fer rate parameters derived from the data on the geometric characteristics of the lymphatic system
(LS) graph structure and the Hagen–Poiseuille-based values of the lymph flows through the system
components, i.e., vertices and edges. It is supplemented by the physics-based model of lymph node
draining-related function which considers a paradigmatic view of its geometry with one- and three-
afferent lymphatic vessels and one efferent vessel, and the lymph flow described by the Darcy–Starling
equations. We discuss further modelling work needed to gain a predictive understanding of the LS
function in response to various perturbations including infections and therapeutic treatments.

Keywords: Lymphatic system, lymph node, oriented graph, compartmental model, Darcy–Starling
model, lymph transport
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The development of computational models that describe the spatiotemporal dy-

namics of physical, chemical and biological processes in the immune system rep-
resents a frontier of the field of mathematical immunology [1]. The spatial structure
of the immune system and its transport processes are contingent upon the network-
and hydrodynamic characteristics of the lymphatic system (LS) and lymphoid or-
gans. Previously, we constructed a network-type model of the LS of mice specified
in the form of an oriented graph [4]. To this end, the Hagen–Poiseuille equations
were employed in order to describe the stationary lymph flow balance within the
LS. A further step in modelling the functioning lymphatic system implies the trans-
ition from a mass balance view to a dynamical characterization of the lymph flow
through the system.

Lymph nodes (LNs) are major structural and functional units of the immune
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system. They play a key role in the perfusion of lymph through the LS [2, 8]. Until
now, the models of lymph dynamics in human and murine LS have ignored the
pumping and reservoir function of LNs [13, 14]. The overall efforts on integrative
modelling of the structure and function of the whole lymphatic system still remain
rather limited [9, 12].

The primary aim of this study is to formulate a compartmental model of the mur-
ine lymphatic system with the transfer rate parameters estimated from the data on
the geometric characteristics of the LS structure and the Hagen–Poiseuille-based
values of the lymph flows through the system components. In addition, we im-
plement the physics-based model of LN draining-related function considering the
paradigmatic view of its geometry with one- and three-afferent lymphatic vessels.
The prototypes of the corresponding model are those based on the Darcy–Starling
equations with one inlet and one outlet vessel [2, 8, 16]. By comparing the es-
timate of the pressure drop through the LN treated as a passive chamber in the
compartmental model with the pressure required to perfuse the lymph through a
physiologically-structured LN, we conclude whether LN-generated pumping needs
to be considered in physics-based models of lymph flow in the LS.

In Section 1 we formulate, calibrate and validate the compartmental model of
the murine LS. Section 2 presents computational models of the LN with a varying
numbers of afferent vessels. Finally, in Section 3 we discuss further modelling work
needed to gain a predictive understanding of the LS function in response to various
perturbations.

1. Compartmental view of the murine lymphatic system
1.1. Compartmental systems

A compartmental system consists of a finite number of macroscopic compartments
that interact by exchanging material [6]. Each compartment contains a material
which is well mixed and spatially homogeneous. The graph representation of the
murine LS as compartmental system with circles standing for the LNs, connect-
ors and drained tissues/organs and the arrows representing the transfer of material
(lymph) into or out of compartments is shown in Fig. 1. The graph G(V,E) consists
of 89 vertices of which 52 vertices are the peripheral ones and 88 edges.

Following the theory of compartmental systems notation [6], the fractional
transfer coefficients or transfer rates represent the fraction of material transferred
per unit of time between the respective compartments. Let N be the number of com-
partments, t be the time, and Qi(t) be the total material (lymph) in compartment
i, i = 1, . . . ,N at time t. The general governing equations for the compartmental
dynamics of mass are as follows [7]:

dQi(t)
dt

= ∑
j 6=i

µi jQ j(t)−∑
j 6=i

µ jiQi(t)−µ0iQi(t)+ Ii(t). (1.1)

Here, µi j, µ0i, and Ii(t) denote the mass transfer rates from compartment j to i,
the mass outflow from compartment i to external environment, and the inflow from
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Figure 1. The oriented graph of the murine LS (modified from [4]) illustrating the connections
between the compartments (89 vertices) in the compartmental system (equation 1.1) with the arrows
(88 oriented edges) indicating the transport orientation. Four types of compartments are shown: (1) tis-
sues or organs from which the lymph is initially collected (orange vertices), (2) lymph nodes categor-
ized into subcutaneous LNs (SCLNs, purple), mesentric LNs (MLNs, light brown), Peyer’s patches
(PPs, brown) and other lymph nodes (blue), (3) jugular veins to which the lymph is finally delivered
from the periphery (red), (4) connectors, i.e., fusion points of multiple lymphatic vessels (cyan). The
compartments representing the organs (left lung, spleen, liver) in which the recirculation of labelled
lymphocytes in rats was analyzed in [5] (apart from the blood, SCLNs, MLNs and PPs) are encircled
with colours indicated in the legend. The transport from the generalized blood compartment (which
includes the jugular veins) to the organs and the transport from the individual lymph nodes directly to
the blood compartment are not shown to prevent cluttering the figure.

external environment to compartment i, respectively. If the transfer coefficients are
constant or depend only on time, the respective system is called a linear compart-
mental system. We consider a linear compartmental model to describe lymphatic
flow in the murine LS. For a qualitative validation of the calibrated model the fol-
lowing properties can be used. If we rewrite the linear version of the system (1.1) in
a matrix-vector form

dQ(t)
dt

= FQ(t)+ I(t) (1.2)

where Q = [Q1,Q2, . . . ,QN ]
T , then the elements of the transfer coefficient matrix
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F = [ fi j]
N
i, j=1 have the following three properties (see [7]):

fii 6 0; fi j > 0, i 6= j; ∑
i

fi j 6 0. (1.3)

These properties follow from the mass conservation principle taking into account
the non-negativity of parameters in (1.1) and the definition of the matrix F elements
(see [7] for details): f ji = µ ji, fii =−µ0i−∑ j 6=i µ ji.

The initial value problem for the system of ODEs (1.1) with corresponding ini-
tial conditions specified in the following section was solved numerically using the
package DifferentialEquations.jl [18].

1.2. Model calibration

To estimate the transfer rates µ ji of the linear version of the compartmental system
(1.2) from the stationary lymph flow in the LS graph (see Fig. 1), we used the
following relationship for the bulk flow rate q ji and velocity v ji through the vessel
(i.e., the edge connecting the vertices i to j) with length l ji and the radius r ji:

v ji =
q ji

πr2
ji

(1.4)

µ ji =
v ji

l ji
(1.5)

where the flow rates q ji were computed according to the Hagen–Poiseuille law-
based model as previously described [4].

Lymph flow rates, and hence, the transfer rates of the compartmental model
were estimated according to the following three scenarios:

(1) all the radii of the vessels r j,i are equal to 150 µm;

(2) the radius of the thoracic duct is 300 µm, the radius of the most distant vessel
is equal to 41 µm, and the radii of the vessels from the jugular veins to the
peripheral vertices decrease linearly with the distance;

(3) the sum of the cross-sectional areas of the vessels is equal to the sum of the
input vessels, and the radii of all the vessels adjacent to the peripheral vertices
are considered equal and calculated so that the radius of the thoracic duct is
300 µm.

The estimates of the velocities v ji and transfer coefficients µ ji for the three scenarios
of the vessel radii r ji are summarized in Fig. 2. To visualize the transfer coefficients
for the three scenarios, an adjacency matrix is shown in Fig. 3, which provides a
global pattern-type view of the respective systemic transfer coefficients.

The numerical values of the transfer coefficients of the compartmental model of
the murine LS are summarized in Table 1 using the notation µ j,i.
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Figure 2. The distribution of radii (left), flow velocities (center) and transfer rates (right) for the
murine LS appearing in equations (1.4) and (1.5) computed according to the Hagen–Poiseuille law-
based model [4]. The edges are enumerated by the indices as labelled in Fig. 1.

1.3. Model validation

The overall set of parameters meets the formal definition of the transfer coefficient
matrix specified by equations (1.3). We used the data on recirculation kinetics of
lymphocytes from rats [15] to specify the reference values for early kinetics of the
mass transfer in the LS. The numerical simulation of the early mass kinetics and
the corresponding experimental data from [15] are shown in Fig. 4. It appears that
Scenario 1 is more consistent with the data than the other two.

In [3], a compartmental model was considered to describe the lymphocyte re-
circulation between the following compartments: organs (left lung, liver, spleen),
groups of LNs, i.e., subcutaneous (SCLNs), mesenteric (MLNs), Peyers patches
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Table 1. Estimated transfer coefficients (s−1).

Coeff. Scenario 1 Scenario 2 Scenario 3 Coeff. Scenario 1 Scenario 2 Scenario 3

µ2,1 1.0×10−2 3.9×10−2 6.5×10−2 µ3,2 1.8×10−2 3.0×10−2 5.6×10−2

µ4,3 1.6×10−2 1.6×10−2 2.5×10−2 µ33,4 6.1×10−2 3.8×10−2 5.4×10−2

µ6,5 3.0×10−3 1.1×10−2 9.3×10−3 µ28,6 6.6×10−2 1.1×10−1 6.8×10−2

µ6,7 3.4×10−2 1.2×10−1 1.0×10−1 µ28,8 1.4×10−2 1.2×10−2 3.7×10−2

µ30,9 3.3×10−2 5.6×10−2 6.9×10−2 µ30,10 7.8×10−3 1.3×10−2 4.9×10−2

µ28,11 3.4×10−2 8.5×10−3 4.3×10−2 µ11,12 1.9×10−2 6.2×10−3 6.0×10−2

µ31,13 8.7×10−3 1.5×10−2 5.4×10−2 µ31,14 3.5×10−2 6.0×10−2 7.4×10−2

µ29,15 5.7×10−3 5.5×10−3 3.5×10−2 µ32,16 3.2×10−2 1.1×10−2 6.6×10−2

µ29,17 4.2×10−2 7.2×10−2 4.4×10−2 µ17,18 2.8×10−2 1.0×10−1 8.8×10−2

µ20,19 1.4×10−2 2.4×10−2 8.8×10−2 µ34,20 4.4×10−2 4.3×10−2 9.2×10−2

µ34,21 3.2×10−2 3.2×10−2 6.7×10−2 µ33,22 8.0×10−2 5.0×10−2 5.6×10−2

µ22,23 2.5×10−2 2.4×10−2 2.6×10−2 µ23,24 2.4×10−2 4.1×10−2 7.5×10−2

µ23,25 1.7×10−2 2.8×10−2 5.2×10−2 µ25,26 8.9×10−3 3.3×10−2 5.6×10−2

µ17,27 2.9×10−3 1.1×10−2 9.1×10−3 µ8,30 2.3×10−2 3.1×10−2 1.1×10−1

µ28,30 1.8×10−2 1.9×10−2 4.1×10−2 µ29,31 2.1×10−2 2.0×10−2 3.2×10−2

µ29,32 2.4×10−1 6.0×10−2 6.0×10−2 µ32,33 5.5×10−2 2.4×10−2 1.6×10−2

µ33,34 5.4×10−2 3.4×10−2 5.6×10−2 µ10,35 4.3×10−3 1.6×10−2 2.7×10−2

µ9,36 2.8×10−3 1.0×10−2 1.7×10−2 µ9,37 1.7×10−2 6.1×10−2 5.2×10−2

µ37,38 8.3×10−3 1.1×10−1 5.2×10−2 µ37,39 3.0×10−3 4.0×10−2 1.8×10−2

µ13,40 4.8×10−3 1.8×10−2 3.0×10−2 µ14,41 2.9×10−3 1.1×10−2 1.8×10−2

µ14,42 1.9×10−2 6.8×10−2 5.8×10−2 µ8,43 4.5×10−3 7.7×10−3 2.8×10−2

µ7,44 4.6×10−3 6.1×10−2 2.9×10−2 µ6,45 4.4×10−3 1.6×10−2 2.8×10−2

µ7,46 4.6×10−3 6.1×10−2 2.9×10−2 µ6,47 5.8×10−3 2.1×10−2 3.6×10−2

µ17,48 4.6×10−3 1.7×10−2 2.9×10−2 µ18,49 5.2×10−3 7.0×10−2 3.3×10−2

µ18,50 4.7×10−3 6.3×10−2 2.9×10−2 µ17,51 5.7×10−3 2.1×10−2 3.6×10−2

µ12,52 6.4×10−3 2.8×10−3 4.0×10−2 µ16,53 4.1×10−3 1.8×10−3 2.6×10−2

µ11,54 6.2×10−3 2.0×10−3 3.9×10−2 µ16,55 6.9×10−3 3.0×10−3 4.3×10−2

µ11,56 8.2×10−3 2.7×10−3 5.1×10−2 µ16,57 8.9×10−3 3.9×10−3 5.6×10−2

µ19,58 1.6×10−2 6.1×10−2 1.0×10−1 µ20,59 1.1×10−2 1.8×10−2 6.6×10−2

µ20,60 2.3×10−2 3.9×10−2 1.4×10−1 µ89,61 2.3×10−2 8.3×10−2 1.4×10−1

µ21,62 1.4×10−2 2.3×10−2 8.6×10−2 µ21,63 1.1×10−2 1.9×10−2 7.1×10−2

µ24,64 1.4×10−2 5.2×10−2 8.9×10−2 µ24,65 1.7×10−2 6.3×10−2 1.1×10−1

µ4,66 6.6×10−3 6.4×10−3 4.1×10−2 µ22,67 6.4×10−3 6.2×10−3 4.0×10−2

µ1,68 3.8×10−3 5.0×10−2 2.4×10−2 µ3,69 3.6×10−3 6.2×10−3 2.3×10−2

µ26,70 4.3×10−3 5.8×10−2 2.7×10−2 µ23,71 3.6×10−3 6.1×10−3 2.3×10−2

µ4,72 9.0×10−3 8.8×10−3 5.6×10−2 µ22,73 8.0×10−3 7.8×10−3 5.0×10−2

µ2,74 1.3×10−3 4.7×10−3 7.9×10−3 µ5,75 1.3×10−2 1.8×10−1 8.4×10−2

µ27,76 1.3×10−2 1.7×10−1 8.0×10−2 µ5,77 1.3×10−2 1.8×10−1 8.4×10−2

µ27,78 1.1×10−2 1.5×10−1 7.0×10−2 µ42,79 3.0×10−3 4.0×10−2 1.8×10−2

µ42,80 8.3×10−3 1.1×10−1 5.2×10−2 µ15,81 4.5×10−3 7.6×10−3 2.8×10−2

µ4,82 1.0×10−2 1.0×10−2 6.5×10−2 µ22,83 9.2×10−3 9.0×10−3 5.7×10−2

µ3,84 1.1×10−2 1.8×10−2 6.8×10−2 µ23,85 1.1×10−2 1.9×10−2 6.9×10−2

µ25,86 1.3×10−3 4.7×10−3 7.9×10−3 µ11,87 3.9×10−3 1.3×10−3 2.4×10−2

µ12,88 1.3×10−2 5.8×10−3 8.3×10−2 µ21,89 2.3×10−2 3.8×10−2 1.4×10−1

(PPs), blood and a generalized compartment of the other and tissues in the rest of
the body. We have used the estimates of transfer rates from [3] to estimate the rates
of transfer between the blood and the input vertices of the graph which represent
a particular organ or which represent the tissues drained by a particular group of
LNs. The indices of the vertices (column 2 in Table 2) which represent the compart-
ments considered in [3], as well as the indices of the input vertices of our graph-
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Table 2. Estimated transfer rates between the blood compartment, organs and lymph nodes. The blood
compartment is denoted as b. (The data from [3] are used.)

Collecting Entrance from Exit from organ
Organ Vertices, k vertices, l blood, µb,l (s−1) into blood,µk,b (s−1)

Left lung 55 (nK = 1) 55 (nL = 1) 3×10−2 3.6×10−2

Liver 60 (nK = 1) 60 (nL = 1) 6.8×10−3 2.8×10−3

Spleen 19 (nK = 1) 19 (nL = 1) 9.3×10−4 1.1×10−4

SCLNs 8, 15, 10, 13, 1, 26 35, 40, 43, 81, 68, 70 6.9×10−5 9.4×10−6

(nK = 6) (nL = 6)
MLNs 21, 24 (nK = 2) 64, 65, 62, 63 (nL = 4) 2.2×10−5 2.8×10−5

PPs 89 (nK = 1) 61 (nL = 1) 8.8×10−5 5.6×10−5

Other LNs nK = 19 nL = 38 2.5×10−6 3.2×10−3

based compartmental model (collecting vertices, column 3) standing for the tissues
which are drained by these lymph nodes, are presented in Table 2. The rate of en-
trance into the collecting vertices from the blood compartment µb,l was estimated as
µb,l = µblood,organ/nL, where µblood,organ is the estimate from [3] and nL is the number
of the collecting vertices for the considered organ. The rates of transfer from the ver-
tices representing the organs to the blood were estimated as µk,b = µorgan,blood/nK ,
where µorgan,blood is the estimate from [3] and nK is the number of the vertices rep-
resenting the considered organ.

Table 2 lists the resulting generalized estimates of the transfer coefficients. Fig-
ure 5 summarizes our data and data from [3] as a graph-type diagram of the murine
compartmental system with the estimated transfer rates for Scenario 1, including the
transfer rates between the graph vertices and the blood (output compartments). The
transfer rates between the indicated compartments (vertices) and blood were estim-
ated by data from Table 2, whereas the transfer rates for vessels (edges) presented
according to Table 1.

1.4. Homeostatic distribution of the substance across various compartments
We used the compartmental model to predict the kinetics of mass distribution fol-
lowing some standard routes of injections via temporal vein or subcutaneous mode.
These predictions are relevant for planning pharmacokinetic studies of drug distri-
bution as well as in studies of experimental virus infections.

Firstly, the kinetics of mass appearance in the right and left jugular veins (ver-
tices 28, 29, respectively) following intravenous (temporal vein) injection is presen-
ted in Fig. 6. The model predicts about two-fold difference in the amount of sub-
stance transferred to the left and to the right jugular vein for all three scenarios, with
the slower rate for Scenario 1 and the fastest rate for Scenario 3.

Secondly, the distribution of the substance in Scenario 1 after injection into the
vertex 68, corresponding to subcutaneous injection administered into the right hind
limb and the subsequent transfer of the substance to the jugular vein, is shown in
Fig. 7. The predicted kinetics characterizes a relative presence of the injected sub-
stance in respective parts of the LS following subcutaneous introduction. It transi-
ently accumulates in popliteal-, external sacral- and iliac nodes over the first 500
seconds and finally, leaves the LS in about 1000 seconds.
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Figure 3. Adjacency matrix for the compartmental model of the murine lymphatic system with the
elements standing transfer rates (s−1) corresponding to three scenarios of the lymphatic vessel dia-
meter changes from the inlet to outlet compartments.
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Figure 4. Early mass kinetics predicted by the compartmental model of the murine LS. The exper-
imental data from [15] are marked by symbols. The group of subcutaneous lymph nodes (SCLNs)
defined in [15] consists of popliteal (vertices 1, 26), deep cervical (vertices 8, 15) and superficial cer-
vical (see below) lymph nodes. Due to the difference in nomenclature of murine LNs in [15] and [4],
we considered two options of mapping superficial cervical LNs on the LS graph: as vertices 10, 13,
which corresponds to the dashed curves SCLNs (a), or as vertices 9-10, 13-14, which corresponds to
the dotted curves SCLNs (b).

Finally, Figure 8 shows the stationary mass distribution in the LS time for three
scenarios under assumption that the system is closed. Assuming the substance is
transferred from the blood to the LS compartments at a rate of 0.038 s−1 [3], we have
set the transfer rate from the blood to each peripheral compartment to 0.038/n s−1,
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Figure 5. Visualization of the transfer coefficients (s−1) on graph of the murine LS according to
Scenario 1. In the vertices, the colour at the top means the rate of exit from the vertex into the blood,
the colour at the bottom — entrance into the vertex from the blood.

where n = 52 is the number of input vertices.
One can conclude that the homeostatic distribution of the substance in the LS

of mice under the assumption of no connection to external environment (closed
system) strongly depends on the scenario of the evolution of the radii of the lymph-
atic vessels from the inlet to outlet compartments. For example, the vertices 32–33,
corresponding to the thoracic duct, appear to be the most substance accumulating
compartments in Scenario 2 and 3. In Scenario 1, the substance distribution looks
more uniform across the LS than in other two scenarios. In Scenario 2, the model
predicts a larger accumulation of the mass in the lung and surrounding LNs.

2. Model of lymph flow through LN

The compartmental model considers LN as a passive chamber. However, it allows
us to estimate a scale of the pressure drop between the incoming and outcoming
vessels according to Hagen–Poiseuille equation. By comparing it to the pressure
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Figure 6. The kinetics of relative mass transfer to the right and left jugular veins (vertices 28, 29,
respectively) for initial values in the peripheral vertices taken as 100%/n, where n = 52 is the number
of peripheral vertices. This scenario corresponds to intravenous injection into temporal vein.
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Figure 7. The distribution kinetics of the substance in Scenario 1 after injection into the vertex 68,
corresponding to subcutaneous injection administered into the right hind limb, and the subsequent
transfer of the substance to the jugular vein.

required for lymph filtration through the LN when its spatial and biomechanical
characteristics are considered, we could conclude whether an active contraction of
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Figure 8. Stationary distribution of the substance in the murine lymphatic system according to the
compartmental model under the assumption of no influx and outflux from the system ODEs integrated
up to t = 105 seconds. The vertices are marked by their type using the same colour notation as in
Fig. 1. The output vertices 28–29 (right and left jugular veins) have been connected to the extra vertex
90 representing the blood compartment (black) with instantaneous transfer between them. The vertices
are enumerated by the indices as labelled in Fig. 1.

LNs is needed for a normal function of LS under physiological conditions. To this
end, we use the Darcy–Starling equations for modelling the lymph flow in LN under
homeostatic conditions.

Transfer of lymph through the lymph nodes is essential for maintaining the fluid
balance between the tissues and the blood vascular system and for the functioning
of the immune system. We consider the following simplified geometrical model of
a murine lymph node: (a) the domain of the lymph node Ω = ΩSS∪ΩC ∪ΩA∪ΩE
consists of the outer and inner subdomains representing the subcapsular sinus (ΩSS)
and the cortex (ΩC), as well as the slight cylindrical extensions from the capsule of
the lymph node representing the interfaces with the afferent and efferent lymphatic
vessels (ΩA and ΩE), (b) the capsule Γcap = ∂ΩSS is represented by an ellipsoid with
the lengths of semi-axes rx = 500, ry = 300, rz = 300 µm, (c) the boundary of the
cortex area ∂ΩC is represented by a concentric ellipsoid with the lengths of semi-
axes being hSS smaller than that of the capsule, where hSS = 10 µm is the width
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Figure 9. The geometry of the computational domain for a lymph node with three afferent vessels,
illustrating (1) the boundaries Γi

A, i∈ {1,2,3}with Neumann condition for the afferent inflow velocity
(cyan, magenta and blue), (2) the boundary ΓE with Dirichlet condition for the efferent pressure
(yellow), as well as (3) the cortex area ΩC (white) and the area of the rest of domain Ω\ΩC (green).
A quarter of the lymph node is clipped to show the interior subdomains.

of the subcapsular sinus, (d) the single efferent lymphatic vessel interface ΩE is a
cylinder with diameter rE = 100 µm located at the lower pole of the lymph node that
extends orthogonally to the Γcap on hSS/2, (e) the afferent lymphatic vessel interface
ΩA consists of one to four similar cylinders Ωi

A with diameters rA = 75 µm located
at the upper side of the lymph node, i.e., at the opposite side from the efferent vessel.
The outer boundaries of the vessel interfaces cross-sectional to the axes of cylinders
Ωi

A and ΩE are denoted as Γi
A and ΓE . The computational domain is illustrated in

Fig. 9 for a lymph node with three afferent vessels.
The lymph flow through the lymph nodes is considered to be subject to the

Darcy law of flow in porous media and the volume continuity equation for lymph
velocity vvv(xxx) and pressure p(xxx):

vvv(xxx) = − KSS

µ
∇p(xxx), ∇ ·vvv(xxx) = 0, xxx ∈Ω\ΩC

vvv(xxx) = − KC

µ
∇p(xxx), ∇ ·vvv(xxx) =−qs(xxx), xxx ∈ΩC

qs(xxx) = k f ((p(xxx)− pBV )−σ∆π), xxx ∈ΩC

(2.1)
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where permeability in the cortex area (KC) is much lower than in the rest of domain
(KSS), µ is the dynamic viscosity of lymph, and qs(xxx) is the sink term applied in the
cortex area ΩC, which represents the volume flux absorbed from the lymph node
into the blood vessels and capillaries (which are assumed to permeate the cortex
homogeneously according to the Starling equation) with the filtration coefficient k f ,
the average difference in oncotic pressure between blood and lymph ∆π = πBV −
πlymph, the reflection coefficient σ , and with the average blood pressure pBV .

System (2.1) is subject to boundary conditions

nnn(xxx) ·vvv(xxx) = 0, xxx ∈ ∂Ω\ΓA \ΓE

nnn(xxx) ·vvv(xxx) =−vA, xxx ∈ ΓA

p(xxx) = pE , xxx ∈ ΓE

(2.2)

where ΓA and ΓE represent the outer boundaries of the afferent and efferent vessel
interfaces cross-sectional to the cylinders, nnn(xxx) is the outer unit normal vector, vA
is the velocity magnitude of the lymph inflow through ΓA, and pE is the pressure at
ΓE .

System (2.1)–(2.2) is solved numerically using the finite volume method with
the two-point-flux approximation scheme in Dumux package [19]. The underlying
unstructured conformal tetrahedral mesh refined towards the vessel interfaces and
the subcapsular sinus was constructed using Gmsh [20].

The following parameter estimates have been used taking into account the
previous modelling studies [2, 4, 8, 16]: KC = 2.8 · 10−4 µm2, KSS = 1.5 µm2,
µ = 0.0015 Pa·s, pBV = 5 mmHg, σ = 0.88, ∆π = 7.7 mmHg, k f = 770 (Pa·s)−1,
vA = 10 mm/min ≈ 167 µm/s, pE = 2.5 mmHg, rescaled to SI units.

The resulting lymph flow in the cross section of the lymph node with one af-
ferent vessel is shown in Fig. 10. The velocity profile demonstrates the values from
10 to 230 µm/s in the subcapsular sinus, while the filtration through the densely
packed cortex is much slower, with velocities less than 1 µm/s. One can see that
the pressure at the afferent vessel (which will be denoted as pA) is larger than the
pressure at the efferent one, while at the center of the cortex, where the lymph is
absorbed into the blood, the pressure is lower than pE . The pressure drop from the
efferent vessel to the cortex center is greater than the difference in pressure between
the efferent and afferent vessels pA− pE . The 5-fold decrease in filtration coefficient
k f results in a different pressure distribution (Fig. 11) with pA− pE much larger than
the pressure drop towards the cortex center. In the lymph node with three afferent
vessels (Fig. 12), with the same parameters as in Fig. 10, the lymph inflow from
three afferent vessels creates a larger pressure gradient between the afferent and ef-
ferent vessels (about 3 mmHg versus 0.5 mmHg in the case of LN with a single
afferent vessel). The pressure is higher in the lateral afferent vessels rather than in
the central one. The pressure at the cortex center is not lower than pressure at the
efferent vessel, in contrast to the previous scenarios with a single afferent vessel, but
there is still an apparent absorption of lymph into the blood. The maximum velocity
magnitude in subcapsular sinus increases 10-fold, up to 1200 µm/s ≈ 72 mm/min
near the sink into the efferent vessel.
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Figure 10. The lymph flow in the cross-section of the lymph node with a single afferent vessel. Left
part presents the distribution of pressure, while the right part shows the velocity field. The parameters
are as indicated in the text.

Figure 11. The lymph flow in the cross-section of the lymph node with a single afferent vessel. Left
part presents the distribution of pressure, while the right part shows the velocity field. The parameters
are as indicated in the text except for the filtration coefficient k f which is decreased 5-fold.
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Figure 12. The lymph flow in the cross-section of the lymph node with three afferent vessels. Left
part presents the distribution of pressure, while the right part shows the velocity field. The parameters
are as indicated in the text.

The pressure drop required for supporting the estimated inflow and outflow of
lymph flow through the LN predicted by the compartment model is about 1 mmHg.
The pressure needed for lymph flow through the LN predicted by the physics-based
model is much larger, i.e., about 4 mmHg. The about 4-fold difference suggests
that active contractions of the LN and/or afferent vessels are required to ensure the
lymph flow through the LN.

3. Discussion

In our study, we developed a comprehensive compartmental model of the murine
LS. It can be used in experimental studies for predicting the pharmacokinetics of
drugs and low-weight molecular substances. Additionally, we explored the Darcy–
Starling based model of lymph flow through the LN. It served to answer the basic
question of LS physiology whether active contractions of LNs and lymphatic vessels
are required for normal drainage function of the LS [17]. The analysis predicts that
the lymphatic pumping seems to be critically needed.

The application of compartmental analysis to the modelling of particular biolo-
gical systems is considered in terms of three major problems: (i) the formulation of
the compartmental model, (ii) the analytical treatment and (iii) the inverse problem
[6]. The latter is the most difficult, as it requires solid data sets to be obtained exper-
imentally [5]. In our study, we explored a different approach to model calibration,
i.e., to use an anatomical and physics-based model [4] to estimate the transfer rates
of the compartmental models of the murine LS.
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The limitation of the presented approach is related to considering a passive
nature of lymph flow through the system (ignoring the active contraction of the
lymphangions [11] and LNs) and the differences in the kinetics of the substance
distribution, which depend on the biological properties of the injected substances. It
is possible to distinguish three major types of transported objects:

(1) low molecular weight substances that enter the tissues/organs and the lymph,
i.e., they mix throughout the body and reach a steady state (if we ignore the
degradation of molecules), as we can see when we take an estimate of the
transfer rates from the calculated lymph flows;

(2) high molecular weight substances (> 10–100 kDa) will mostly remain in the
blood. They do not directly enter the lymphatic system (unless they are viral
particles that are captured by antigen-presenting cells to be delivered to the
draining LNs), or special molecules covered with the lipophilic shell;

(3) lymphocytes, for which it is necessary to evaluate the transfer coefficients
based on experimental data, rather than using estimates from calculations of
the lymph flow through the lymphatic vessels and into the LNs, since their
transport is not only a passive process with the lymph flow but involves a
number of other factors.

We have developed two key elements for modelling the structure and function of
the LS, i.e., the systemic compartmental model (global description) and the physics-
based model of the LN with a varying number of afferent lymphatic vessels (local
description). The LN model will be integrated into the global LS model to replace
the static LN-representing compartments.

To reproduce the properties of LNs in terms of their influence on the lymph flow
in the lymphatic system, the future work will be based on the use of trained artificial
neural networks (ANNs) as follows. With information on flows and pressures on the
afferent vessels of the LNs as input data, the flow and pressure at the beginning of
the efferent vessel can be calculated using a neural network model. The neural net-
work (NN) could be of a multi-layer perceptron type. The NN-type model topology
implies one or more layers of neurons, which should allow us to adapt the beha-
viour of the network to reproduce the dependence of pressure and lymph flow from
the LN in relation to the input parameters as shown in our previous study [16]. The
integration of the NN-based model and the systemic model of lymphatic flow in the
murine LS will provide a powerful computational tool for predictive understanding
of the immune system function in response to various perturbations of its homeo-
stasis ranging from pathogens to combination immunomodulatory treatments.
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