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Junction conditions for one-dimensional network
hemodynamic model for total cavopulmonary connection
using physically informed deep learning technique
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Abstract — This paper presents a novel methodology utilizing physics-informed neural network
(PINN) as a junction condition for a 1D network model of blood flow in total cavopulmonary con-
nection generated by the Fontan procedure. The technique integrates a 3D mesh generation process
based on the parameterization of the junction geometry, along with a sophisticated physically regu-
larized neural network architecture. Synthetic datasets are produced using 3D steady Stokes simula-
tions within fixed boundaries. We use a physically informed feedforward neural network that utilizes
a physically regularized loss function, which incorporates the principle of mass conservation. Our
PINN achieves a tolerance of 6% on the test set. We develop a 1D-PINN multiscale model based on
a previously developed method for multiscale 1D–3D simulations. Comparison with 1D–3D Stokes
based model and 3D Navier–Stokes based model verifies the 1D-PINN model. In the first and second
comparison, the maximum deviations of the averaged pressures and flows do not exceed 1.48% and
12.26%, respectively.
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Understanding blood flow dynamics in human vascular bifurcations is crucial

for simulating hemodynamics in the presence of cardiovascular diseases and for
developing effective treatment strategies. Accurate estimation of blood flow para-
meters, such as pressure and flow, in these complex regions is essential for making
informed clinical decisions based on numerical simulations. The intricate interac-
tions between various hemodynamic factors and the complexity of blood flow, par-
ticularly in situations such as the Fontan operation, present significant challenges to
precise estimation.

Palliative surgery is commonly performed on patients with congenital heart dis-
ease (CHD). Typically, the initial stage of palliative surgery involves creating a
systemic-pulmonary shunt at birth to prepare the lung bed for subsequent opera-
tions. The second stage is the bidirectional cavopulmonary anastomosis (BCPA),
also known as the Glenn operation, in which the trunk of the lung is detached from
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the heart, and the superior vena cava is connected to the pulmonary artery. The
final stage, known as the total cavopulmonary connection (TCPC) or the Fontan
operation, is considered a highly effective method for redirecting blood from the
inferior vena cava to the pulmonary arteries. However, despite surgical correction,
the complication rate remains high, and the quality of life for patients is often poor.
A model-based understanding of Fontan circulation and optimizing the Fontan op-
eration can enhance prognosis for real patients [23].

3D models of blood flow enable clinicians to test various vessel configurations
and flow conditions. These models help to minimize pulmonary and TCPC resist-
ance, reduce energy dissipation in the TCPC, balance hepatic and total flow distri-
bution between the right and left lungs, and avoid regions with excessive or low
wall shear stress. Local three-dimensional blood flow modelling is frequently used
to address such issues [15, 22]. The integration domain comprises the junction of
the inferior and superior vena cava (IVC and SVC) and the left and right pulmon-
ary artery (LPA and RPA). Rapid evaluation of hemodynamic parameters without
solving complex Navier–Stokes equations is desirable for clinical software.

In recent years, the convergence of deep learning and computational fluid dy-
namics has shown significant potential in addressing the challenges mentioned
above [9]. Researchers have investigated the use of Physics-Informed Neural Net-
works (PINNs) to bridge the gap between complex physical phenomena and data-
driven predictive models. The primary benefit of PINNs is their capacity to incor-
porate prior knowledge of the fundamental physical laws that govern fluid flow,
enabling the development of robust models capable of handling complex vascular
geometries effectively.

In [3], a PINN was developed to estimate aortic hemodynamics using di-
mensionless Navier–Stokes equations and the divergence-free equation for addi-
tional physical regularization. In [14], cerebral hemodynamics was estimated using
PINNs, with neural networks trained to satisfy conservation of mass and momentum
at all junction points in the arterial tree.

This paper investigates the use of PINNs for estimating blood flow parameters
in human vascular junctions following the Fontan procedure. The focus is on de-
veloping an integrated methodology that combines data generation techniques with
advanced neural network architectures. After successful training, the neural network
can operate without requiring substantial computational resources during applica-
tion with high accuracy of a 3D model.

We describe the training process for a physically regularized neural network,
starting with the creation of synthetic datasets using Latin Hypercube sampling
(LHS). First, a parametric set of 3D meshes was generated using the GMSH lib-
rary [4], considering the physiological ranges of radii and angles at the junction
of the four vessels. Next, 3D simulations of blood flow were performed for each
geometry, employing steady Stokes equations with fixed boundaries within a com-
putational domain representing rigid vessel walls. The input parameters consist of
mean pressure values at the inflow and outflow boundaries and geometric charac-
teristics of vascular junction, while the output parameters include mean flow values
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at these boundaries. Ideally, the training dataset should be derived from real patient
data, necessitating extensive measurements across a wide range of parameter val-
ues — an effort that is currently challenging with existing equipment capabilities.
To overcome this challenge, we generate synthetic data using a 3D steady Stokes
finite element solver.

Additionally, we explore physically regularized loss function (PRLF). We pro-
pose a PRLF implementation that includes a mass conservation condition. The
Adam optimization algorithm is used to minimize the loss functions [7], achiev-
ing an average relative error of 10%. The integration of PRLF with LHS facilitated
convergence on a reduced dataset, resulting in a lower relative error of approxim-
ately 6% on the test dataset.

In this work, we use a previously developed PINN for estimating blood flow
parameters in four-vessel junction generated by the Fontan procedure [6]. Addi-
tional data augmentation was conducted by duplicating symmetric cases in the data-
set. The hyperparameters were fine-tuned using the Multi-Objective Tree-structured
Parzen Estimator (MOTPE) method. PINN was trained using 3D steady Stokes
equations without convective term in a 3D domain. It predicts average flows at the
inputs and outputs basing on the average pressures and parameters of the 3D geo-
metry. In this paper, we use this PINN for the first time as a boundary condition for
connecting four 1D elements. This method provides better precision compared to
the prevalent 0D static pressure and flow conservation assumptions, facilitating the
integration of dependency on the angles of vascular junctions.

The proposed model is evaluated through a comparative analysis with simula-
tions generated by the previously developed multiscale 1D-3D model [2] and with a
3D model. The 1D-3D model employs the steady Stokes equations, whereas our 3D
model is based on the fundamental Navier–Stokes equations. As the training dataset
is generated by the 3D Stokes solver, the 1D-PINN model provides similar results to
the 1D-3D model with the Stokes simulation in the 3D junction domain. Although
exploiting the 3D incompressible Navier–Stokes equations gives a better physical
model, in our future research we shall use 3D fluid-structure interaction simulations
in TCPC for training and test datasets as the most physiologically appropriate model
of flows in TCPC.

The paper is organized as follows. In Section 1 we briefly describe design of
PINN. In Section 2 we propose a new technique for using PINN as boundary con-
ditions for 1D network model. In Section 3 we discuss the results of PINN training
and validation of 1D-PINN network model. In Section 4 we discuss the features of
the new approach and future work.

Abbreviations

In the present paper we have used the following abbreviations:
TCPC — total cavopulmonary connection;
IVC — inferior vena cava;
SVC — superior vena cava;
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Figure 1. 3D mesh generation algorithm of a four vessels junction.

RPA — right pulmonary artery;
LPA — left pulmonary artery;
PRLF — physically regularized loss function;
PINN — physically informed neural network;
LHS — latin hypercube sampling.

1. Physically informed neural network for blood flow simulation in the
total cavopulmonary connection

1.1. Dataset generation

The dataset for the training and testing phases contains average pressure and flow
values at the boundaries of the four-vessel junction. We compute the flows using a
3D geometry and stationary Stokes equations within a domain with fixed boundaries
(see Fig. 1).

The junction geometry is parameterized by the angles α and β between the ves-
sels, the radii r j of each vessel and the shift in junction dx (see Fig. 2). We have
developed a parametric mesh generation software using the GMSH [4] library to
automate the construction of 3D meshes for a four-vessel junction. The compu-
tational domain is defined as the union of several cylindrical tubes (see Fig.1a). A
quasi-uniform mesh is then constructed in this domain (see Fig. 1b). After construct-
ing the mesh, further mesh cosmetics is applied using the Ani3D [19] package.

The blood is assumed to be a viscous incompressible fluid with viscosity ν =
0.04 cm2s−1 and density ρ = 1 g/cm3. The 3D domain of junction of four vessels Ω

(see Fig. 1b) with boundary ∂Ω is composed of rigid walls Γ0, two inlets Γ1,2 and
two outlets Γ3,4. The blood flow in Ω is described by the steady 3D Stokes equations
as follows

−ν∆u+∇p = 0
divu = 0 in Ω

u = 0 on Γ0

ν
∂u
∂n
− pn = p jn on Γ j, j = 1, . . . ,4

(1.1)
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Figure 2. Parameterization of the four vessels junction: inferior vena cava (IVC), superior vena cava
(SVC), left pulmonary artery (LPA), right pulmonary artery (RPA).

where p is the pressure, u is the velocity vector field, n is the outward normal vector
to the boundary surface, p j is average pressure on Γ j. On immobile side wall, we
assume no-slip and no-penetration boundary condition.

LBB-stable Taylor–Hood (P2/P1) finite element method [21] is used for the
approximation of (1.1). Multifrontal sparse direct solver MUMPS [1] based on exact
factorization of the matrix is applied for solving the resulted system of equations.
Blood flow rates q j on the boundaries Γ j ( j = 1, . . . ,4) are calculated for further
neural network training as follows

q j =
∫

Γ j

u ·nds, j = 1, . . . ,4. (1.2)

1.2. Design of the neural network

A feed-forward neural network (FFNN) establishes a mapping{{
p j
}4

j=1 ,
{

r j
}4

j=1 ,α,β ,dx
}
−→

{
q j
}4

j=1 . (1.3)

The specification of FFNN involves determining the number of layers and neur-
ons, selecting an activation function for each neuron, defining a loss function based
on the connection weights between neurons, implementing a dropout algorithm to
randomly disconnect certain neurons from the network, and establishing an optim-
ization procedure to minimize the loss function with respect to the weights.

Input and output layer sizes are predefined, with the first layer containing in-
put parameters (eleven neurons) and the last one matching predicted parameters
(four neurons). Determining the size of the hidden layers is challenging, and we ex-
plore two approaches for that. In this study, the dropout algorithm [18] is employed.
This algorithm randomly removes neurons according to a pre-established probabil-
ity. This process assists in preventing the network from overfitting to the input data,
thereby enhancing its ability to generalize.
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We set the activation function as

ReLU(κ) = max(0,κ) (1.4)

where κ is the sum of the outputs from the previous layer neurons. Compared to
other forms of activation functions, ReLU(κ) requires less computational resources
during training [8]. This allows for more efficient numerical experiments.

We set the loss (error) function as

PRLF(q, q̂) = MSE(q, q̂)+PhysLoss(q) (1.5)

where q = {q1,q2,q3,q4} are the predicted values, and q̂ = {q̂1, q̂2, q̂3, q̂4} are the
true values, MSE is the mean squared error

MSE(q, q̂) =
1
n

n

∑
i=1

4

∑
j=1

(q ji− q̂ ji)
2 (1.6)

and PhysLoss is a physical component

PhysLoss(q) =
ξ

n

n

∑
i=1

(
4

∑
j=1

q ji

)2

(1.7)

where ξ is the weight coefficient, n is the number of training simulations (i.e., rows
in the dataset), i is index of a training simulation, j is index of inlet or outlet bound-
ary Γ j of the 3D domain (see Fig. 1). We refer the neural network with PRLF as
a physically informed neural network (PINN) [11], since it imposes penalties on
the model for deviating from physical constraints, which in our case ensures mass
conservation

4

∑
j=1

q j = 0. (1.8)

In order to assess comprehensively the performance of the PINN during the
training process, we use two different error metrics, namely, Relative Error (RE)
and R-squared (R2). RE provides a relative measure of the model accuracy across
all data points by measuring the average percentage deviation between the true target
values q and the predicted values q̂. R2 quantifies the fit of the model by assessing
the proportion of variability in the target variables. A higher value of R2 indicates a
better fit, with 1 indicating a perfect fit and 0 indicating no explanatory power.

We set RE and R2 as

RE =
1
n

n

∑
i=1

4

∑
j=1

|q ji− q̂ ji|
|q̂ ji|

(1.9)

R2 = 1−
∑

n
i=1 ∑

4
j=1 (q ji− q̂ ji)

2

∑
n
i=1 ∑

4
j=1
(
q ji−q j

)2 (1.10)
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where q is the mean value of the observed values

q j =
1
n

n

∑
i=1

qi j. (1.11)

By including both RE and R2, we obtain a comprehensive understanding of the
accuracy of the model, which captures both relative deviation and overall explanat-
ory power. Division by zero in (1.9) and (1.10) is not possible: q̂ ji 6= 0 due to the
boundary conditions in the considered model with static nature, q ji− q j 6= 0 since
the flows occur in assigned directions.

The training of the neural network utilizes the error backpropagation algorithm [12].
The most effective technique is currently regarded as the Adam implementation [7].

2. 1D network hemodynamic model for total cavopulmonary connec-
tion with PINN boundary conditions

In the 1D blood flow model every vessel is represented by a long axisymmetric
elastic tube. Blood is considered as a viscous incompressible fluid with density ρ .
In every tube 1D mass and momentum conservation laws have the form

∂S
∂ t

+
∂ (Su)

∂x
= 0

∂u
∂ t

+
∂ (u2/2+ p/ρ)

∂x
= 0, x ∈ [0, l], t ∈ [0,T ]

(2.1)

and the constitutive equation has the form

p = ρc2
0 f (S) (2.2)

where u is the linear velocity averaged over the cross-section, p is the blood pressure
averaged over the cross-section, S is the area of the cross-section, c0 is the velocity of
the small disturbance propagation in the material of the vessel wall. The constitutive
equation (2.2) relates the pressure to the cross-section area and describes elastic
properties of the vessel wall [20]. We set this function for each vessel as

f (S) =

{
exp(SŜ−1−1)−1, S > Ŝ
ln(SŜ−1), S 6 Ŝ

(2.3)

where Ŝ is the cross-section area of the vessel at rest. For initial conditions, the mean
velocity and the cross-section area are prescribed, u|t=0 = u0, S|t=0 = Ŝ.

System (2.1) is hyperbolic and can be integrated by the grid-characterstic me-
thod [10]. The boundary conditions in the vascular junction include numerical dis-
cretization along outgoing characteristic [16]:

u = ψS+ξ (2.4)
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(a) (b) (c)
Figure 3. Computational domains of TCPC for (a) 3D model; (b) 1D–3D multiscale model; (c) 1D-
PINN model.

for every first and last node of the grid for the vessel, ψ and ξ depend on the type
of approximation. The other boundary conditions commonly state flow and total
pressure conservation. See [16, 17] for the detailed definition and other alternatives.

The real TCPC domain is three-dimensional (see Fig. 2a). Integration of a local
3D junction region into a 1D vascular network (see Fig. 2b) is an efficient sim-
plification of the full 3D model. In this work, we establish a relationship between
boundary pressures and flows of the 3D TCPC region by the PINN and use the
PINN-based mapping (1.3) instead of 3D simulations. For the fixed geometry (i.e.,
for the given α , β , {r j}4

j=1 and dx) we have

q j = Fj(p1, p2, p3, p4), j = 1, . . . ,4 (2.5)

where j is the index of the appropriate 1D-NN interface (see Fig. 2c), Fj imitates
parameters of a 3D flow via the PINN. Thus, for every given set {p j}4

j=1 we have a
corresponding set {q j}4

j=1, which is physically correct in the sense of (1.1).
The iterative numerical algorithm for the coupled 1D–3D simulation (see Fig. 2b)

was presented previously in [2]. In this work we use the same methodology for de-
riving an algorithm for the coupled 1D-NN (see Fig. 2c) simulations.

We assume that numerical solution of the 1D model is known at time tn. For
n = 0 the solution is defined by the initial conditions. We set the initial guess for the
flows q(0)1D, j at the 1D-PINN interfaces as the linear extrapolation of two previously
calculated flows q j(tn−K) and q j(tn):

q(0)1D, j(t)= q j(tn−K)+
t− tn−K

tn− tn−K

(
q(0)j (tn)−q j(tn−K)

)
, j = 1, . . . ,4, tn 6 t 6 tn+K

(2.6)
and we run 1D model (2.1) from tn to tn+K with variable time steps τ

(0)
k (tn+K− tn =

∑
K
k=1 τ

(0)
k ), which are defined by the Courant criterion. For every time step we set

the boundary conditions at the 1D-PINN interface as

S(0)j (t)u(0)j (t) = q(0)1D, j(t), j = 1, . . . ,4, tn 6 t 6 tn+K
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together with the approximation of the compatibility condition along the outgoing
characteristic (2.4). For n = 0 we assume the flow and total pressure conservation
laws similar to the 1D blood flow model

4

∑
j=1

q(0)1D, j = 0

(
u(0)i

)2

2
+

p(0)i
ρ

=

(
u(0)j

)2

2
+

p(0)j

ρ
, i, j = 1, . . . ,4, i 6= j

(2.7)

in the node for the first K time steps to calculate q(0)j (t), 0 6 t 6 tK . After that, we
update the values

p(0)j (tn+K) = ρc2
0 j f (S(0)j (tn+K))

q(0)j (tn+K) = Fj

(
p(0)1 (tn+K), p(0)2 (tn+K), p(0)3 (tn+K), p(0)4 (tn+K)

)
, j = 1, . . . ,4

(2.8)
where c0 j and S0 j are manually defined for vessel j basing on the patient’s data, Fj
is defined in (2.5).

Finally, we find p j(tn+K), q j(tn+K) at the 1D-PINN interfaces by the following
iterative algorithm.

In the present work we set K = 5 · 103, ε = 10−9, Nmax = 100, χ = 0.09, ω =
0.09.

3. Results
3.1. Evaluation of PINN training

The dataset used for training the neural networks was generated based on a junction
of four vessels with varying angles, radii, and boundary pressures. The length of all
segments was set to 7 cm. The radii for the SVC (r1), LPA (r2), and RPA (r4) (see
Fig. 2) varied between 0.7 cm and 2.3 cm. The radius of the IVC (r3) ranged from r1
to 2.5r1 for each specific value of r1. The distance between the centers of the SVC
and IVC (dx) was varied from 0 to r1+r3 for each combination of r1 and r3. Angles
between the vessels ranged from 60◦ to 120◦. The boundary pressures were ranged
from −100 Pa to 100 Pa.

To systematically explore the multidimensional space of parameters and en-
hance the diversity of our dataset, we employ the Latin Hypercube Sampling (LHS)
method [5]. Let P represent the parameter space defined by the angles α,β
between vessels, the distance dx between the centers of the IVC and SVC, and the
radii {r j}4

j=1. For each parameter LHS ensures proportional and stratified sampling.
The samples are obtained such that the marginal distribution of each parameter is
uniformly represented, and correlations between parameters are minimized. Using
this approach, we created 100 computational meshes with with various geometric
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Algorithm 2.1 Algorithm for computing pressure and flow at the 1D-PINN inter-
faces

1. Compute the flows at the 1D-PINN interfaces as

q̃(i+1)
j (tn+K) = (1−ω)q(i)1D,j(tn+K)+ωq(i)j (tn+K), j = 1, ...,4

where q(i)1D,j(tn+K) is computed based on the 1D simulations as

q(i)1D,j(tn+K) = S(i)j (tn+K)u
(i)
j (tn+K). (2.9)

2. Run 1D model (2.1) from tn to tn+K with the updated boundary conditions at
the 1D-PINN interfaces

S(i+1)
j (t)u(i+1)

j (t) = q j(tn)+
t− tn

tn+K− tn

(
q̃(i+1)

j (tn+K)−q j(tn)
)

(2.10)

j = 1, . . . ,4, tn 6 t 6 tn+K

and (2.4). To improve the accuracy of simulations we cal-
culate S(i+1)

j (t)u(i+1)
j (t) by the second-order interpolation of

q j(tn+K),q j(tn),q j(tn−K).

3. Compute

p̃(i+1)
j (tn+K) = ρc2

0 j f (S(i+1)
j (tn+K))

p(i+1)
j (tn+K) = (1−χ)p(i)j (tn+K)+χ p̃(i+1)

j (tn+K) (2.11)

q(i+1)
j (tn+K) = Fj

(
p(i+1)

1 (tn+K), p(i+1)
2 (tn+K), p(i+1)

3 (tn+K), p(i+1)
4 (tn+K)

)
j = 1, . . . ,4.

4. Increase i by 1 if |p(i+1)(tn+K)− p(i)(tn+K)|> ε and i<Nmax or stop iterations
otherwise.

parameters {r j}4
j=1, α , β , dx. Next, we apply LHS to generation of 50 inlet and out-

let pressure combinations {p j}4
j=1 for each mesh resulting in 5 ·103 data samples.

For training the PINN, 80% of the dataset was randomly selected for training,
while the remaining 20% was reserved for testing. The technical specifications for
the PINN training are: CPU is AMD Ryzen 7 5800X (16) 3.800 GHz, GPU is
NVIDIA GeForce GTX 1660 Ti, RAM is 32 GB RAM.

The results indicate that, in both the training and test phases of the study, a con-
vergence trend is evident in the PINN, characterized by decrease in the loss function
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Figure 4. Convergence of the PINN.

in absolute value and the error (RE) function, and increase in the R2 function, which
approaches 1 in the limit. The corresponding dependencies are shown in Fig. 4.

Figures 4a and 4b show decrease in absolute loss function (PRLF). The neural
network achieves RE values in the range of 6-7% after 600 epochs (see Figs. 4c and
4d), which indicates satisfactory performance. The R2 values shown in Figs. 4e and
4f, indicate that our PINN effectively captures the variation in the targeted variables
across both datasets.
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Table 1. Geometrical parameters of
the computational domains. Case Diameter of conduit, cm α β dx, cm

1 1.2 90◦ 90◦ 0
2 1.8 90◦ 90◦ 0
3 1.2 90◦ 60◦ 0
4 1.2 90◦ 90◦ 0.6

3.2. Verification of the 1D-PINN network hemodynamic model

In this part we present a set of numerical experiments to simulate blood flow in the
TCPC domain. We analyzed the 4D flow MRI mapping data of 8 patients 11–13
years old with Fontan circulation to define the model parameters. The examinations
were performed on Siemens 1.5 Tesla Avanto MR tomograph, using a multichannel
surface coil for scanning with ECG synchronization. The average diameters of SVC,
RPA, and LPA were 1.19 cm, 1.18 cm, and 1.32 cm, respectively. Average forward
volume in IVC and SVC was 31.6 ml/s and 11.7 ml/s.

We assume all four vessels (SVC, RPA, LPA and conduit continued by IVC) as
straight tubes of length 12 cm with round cross-section. The lengths of conduit and
IVC are set to 7 cm and 5 cm, respectively. Diameters of SVC, RPA, LPA, IVC are
set to 1.2 cm for all cases. We studied four typical geometries:

Case 1: Four equal mutually perpendicular vessels lie in the same plane (symmet-
rical cross), diameter of conduit is 1.2 cm (Fig. 5a);

Case 2: The diameter of the conduit is 1.5 times larger than the diameters of the
other vessels (Fig. 5b);

Case 3: SVC is at angle 60◦ to the LPA (Fig. 5c);

Case 4: SVC is shifted 0.6 cm right relative to the conduit (Fig. 5d).

Geometrical parameters of the computational domain are summarized in Table 1.
We set flow rates on the IVC and SVC inflows equal to 31.6 ml/s and 11.7 ml/s

based on patient’s MRI data analysis. The Poiseuille pressure drop condition is
posed as an outflow boundary condition in RPA and LPA: P = Pout +QR, where P
and Q are pressure and flow rate at the end of the vessel, Pout = 5 mmHg is a typical
pressure in the healthy heart. Typical pressure for TCPC domain is 14 mmHg. We
set the resistance R equal to 553 g/cm4·s. This value provides the physiologically
acceptable pressure drop of 9 mmHg in the case of symmetrical flow distribution
between RPA and LPA (Q = 21.65 ml/s).

We simulate the blood flow in the considered geometries (see Fig. 5) by three
models: 1D-PINN, 1D–3D, and 3D. We compare 1D-PINN results with the results
of 1D–3D and 3D simulations in order to validate our new 1D-PINN model.

Figure 3a presents 3D computational domain for the 3D(NS) blood flow model.
The model is based on the Navier–Stokes equations. LBB-stable TaylorHood (P2/P1)
finite element and backward Euler time stepping are used for the numerical simula-
tions [21]. To cope with convective instabilities in the numerical solution we added
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(a) (b)

(c) (d)

Figure 5. Typical TCPC geometries.

the Smagorinsky turbulence model [13] with weight coefficient 0.2. The flow rates
and pressures were averaged over the cross-section and calculated at distance 5 cm
from the inflow and the outflow outer boundaries. These cross-sections correspond
to the multimodel interfaces in 1D-PINN and 1D–3D models.

The scheme of the computational domain for 1D–3D model is shown in Fig. 3b.
The central part of the TCPC domain is considered as a 3D region with rigid walls
and the remaining parts of the vessels as 1D regions. The stationary 3D Stokes
problem (1.1) is solved at each time step in the 3D domain. Conservation of mass
and continuity of pressure are demanded at the interface between 1D and 3D models.
Discretization and an algebraic solver of the coupled model are described in [2]. The
length of each 1D vessel in both models is set to 5 cm.

The scheme of the computational domain for 1D-PINN model is presented in
Fig. 3c. The average number of iterations for the convergence at 1D-PINN interface
is from 17 to 26 depending on the geometry.

The results of the simulations include flow rates and pressures at the multimodel
interfaces of 1D-PINN and 1D–3D models as well as in the corresponding regions of
3D model. Tables 2 and 3 summarize these values and show the relative difference
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Table 2. qSVC,qRPA,qIVC,qLPA, calcu-
lated by 1D-PINN, 1D–3D and 3D(NS)
with the relative difference between
1D-PINN — 1D–3D and 1D-PINN —
3D(NS) models in parentheses.

Case 1D-PINN 1D–3D 3D(NS)

qSVC, ml/s
1 11.70 11.70 (0.00%) 11.70 (0.00%)
2 11.70 11.70 (0.00%) 11.70 (0.00%)
3 11.70 11.70 (0.00%) 11.70 (0.00%)
4 11.70 11.70 (0.00%) 11.70 (0.00%)

qRPA, ml/s
1 21.37 21.65 (1.29%) 21.65 (1.29%)
2 21.43 21.65 (1.02%) 21.64 (0.97%)
3 21.35 21.65 (1.39%) 21.56 (0.97%)
4 21.40 21.65 (1.15%) 21.80 (1.83%)

qIVC, ml/s
1 31.60 31.60 (0.00%) 31.60 (0.00%)
2 31.60 31.60 (0.00%) 31.60 (0.00%)
3 31.60 31.60 (0.00%) 31.60 (0.00%)
4 31.60 31.60 (0.00%) 31.60 (0.00%)

qLPA, ml/s
1 21.40 21.65 (1.15%) 21.63 (1.06%)
2 21.44 21.65 (0.97%) 21.65 (0.97%)
3 21.40 21.65 (1.15%) 21.71 (1.43%)
4 21.44 21.65 (0.97%) 21.50 (0.28%)

between 1D-PINN and 1D–3D as well as between 1D-PINN and 3D(NS) for the
sake of comparison.

From Tables 2 and 3 we can conclude that the 1D-PINN model shows little rel-
ative difference from the 1D–3D model. The maximum deviation, both in terms of
pressure and flow rate, does not exceed 1.48%. Since the same 3D model was used
both for the 3D part in the 1D–3D model and for the PINN training, this observa-
tion reconfirms the successful performance of the PINN (rf. to Section 3.1). There
is a slight asymmetry in the flow distribution between RPA and LPA and a loss of
fluid within 1–1.3% in the 1D-PINN model. Most likely the PINN systematically
underestimates pressure by 0.6–1.5%.

The 3D(NS) model provides the pressure drop between the inflow and out-
flow boundaries of the central TCPC region in the range of 0.8–1.65 mmHg. It
is much greater than the pressure drop in the 1D-PINN and 1D–3D models (0.11–
0.22 mmHg). The difference in pressure between the models can be attributed to
the fact that the 3D(NS) model incorporates inertial forces resulting from the con-
vective term. Maximum relative difference between the pressures calculated by the
1D-PINN and 3D(NS) models is 12.26%.

Basing on the 3D(NS) simulations we observe the difference in hemodynamic
parameters depending on the geometrical configuration. Increasing the diameter of
the conduit leads to a general decrease in TCPC pressure: in Case 2 the pressure in
vena cava is lower by 0.66 mmHg. Changing the connection angle of the SVC or
shifting the SVC relative to the IVC leads to the blood redistribution between RPA
and LPA: 49.83% of blood goes to RPA in Case 3 and 50.35% in Case 4. The central
pressure decreases as well but less significantly than in Case 2. At the same time the
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Case 1D-PINN 1D–3D 3D(NS)

pSVC, mmHg
1 13.96 14.11 (1.06%) 15.91 (12.26%)
2 13.99 14.11 (0.85%) 15.24 (8.20%)
3 13.96 14.11 (1.06%) 15.82 (11.76%)
4 13.97 14.11 (0.99%) 15.60 (10.45%)

pRPA, mmHg
1 13.85 13.97 (0.86%) 14.26 (2.88%)
2 13.88 13.97 (0.64%) 14.26 (2.66%)
3 13.85 13.97 (0.86%) 14.22 (2.60%)
4 13.87 13.97 (0.72%) 14.31 (3.07%)

pIVC, mmHg
1 13.98 14.19 (1.48%) 15.72 (11.07%)
2 13.98 14.08 (0.71%) 15.06 (7.17%)
3 13.98 14.19 (1.48%) 15.68 (10.84%)
4 14.00 14.19 (1.34%) 15.56 (10.03%)

pLPA, mmHg
1 13.87 13.97 (0.72%) 14.26 (2.73%)
2 13.88 13.97 (0.64%) 14.25 (2.60%)
3 13.87 13.97 (0.72%) 14.29 (2.94%)
4 13.88 13.97 (0.64%) 14.19 (2.18%)

Table 3. pSVC, pRPA, pIVC, pLPA, calcu-
lated by 1D-PINN, 1D–3D and 3D(NS)
with the relative difference between 1D-
PINN — 1D–3D and 1D-PINN —
3D(NS) models in parentheses.

maximal relative deviation between the flow rates calculated by the 1D-PINN and
full 3D models is 1.83%.

4. Conclusions
This paper presents new junction conditions for one-dimensional network hemo-
dynamic model for the total cavopulmonary connection generated by the Fontan
operation. The conditions include physically informed neural network trained with
3D stationary Stokes flow model, satisfying mass conservation constraint. We ex-
tend the combination of 1D and 3D models developed earlier to the combination
of 1D and PINN models which is less expensive computationally. The novel junc-
tion conditions of the 1D network model account for the geometric parameters of
the complex vascular junction, including such aspects as angles between the four
vessels and their respective shift. Clearly, the methodology described here can be
applied in a similar manner to the analysis of vascular junctions exhibiting alternat-
ive anatomic and surgically induced geometries. To the best of our knowledge, no
other works have been identified that exhibit comparable functionality. Neverthe-
less, the present result represents the initial phase in the development of a PINN-
based boundary conditions for complex vascular junctions in a 1D network model,
which are based on 3D dynamic Navier–Stokes simulations with elastic moving
walls.

The results show decrease of the PINN’s error function to the tolerance of 7%
after 600 epochs of training. There is acceptable variation in both training and test
data sets. The 1D-PINN model shows good agreement with the reference 1D-3D
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model in four typical geometries. It can be stated that the maximum deviations of av-
eraged pressures and flows do not exceed 1.48%. The 1D-PINN model demonstrates
a satisfactory degree of agreement with the dynamic 3D Navier–Stokes model, ex-
hibiting maximum deviation of 12.26%.

In this study, a steady-flow model ignoring inertia forces is utilised for the pur-
poses of PINN training. Therefore, the distinction between 1D-PINN and 3D(NS)
is considerable. These deficiencies will be rectified in the subsequent phase of re-
search. In this regard, the forthcoming work will entail the implementation of the
Navier–Stokes model as the underlying foundation for PINN training. Furthermore,
additional testing and validation of the model are necessary, employing a greater
number of geometric models and real patient data, in order to enhance its reliability.

The 3D Navier–Stokes model is regarded as a benchmark for its capacity to
provide a more accurate representation of fluid flow dynamics by incorporating the
convective term and time. In the future research, we shall use 3D fluid–structure
interaction simulation as a point of reference as the most physiologically appropriate
model of flows in TCPC.

The proposed approach permits the incorporation of locally complex flow pat-
terns into extended one–dimensional network hemodynamic model at the relatively
low computational cost and with notable efficiency. By employing this methodo-
logy, one can assess the geometric properties of the vessel junction region, which
is a distinctive attribute absent in the majority of contemporary 1D models. The
potential of the proposed methodology has been illustrated through the analysis of
representative instances of vessel anastomosis generated by the Fontan procedure.
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23. D. de Zélicourt and V. Kurtcuoglu, Patient-specific surgical planning, where do we stand? The
example of the Fontan procedure. Annals of Biomedical Engineering 44 (2015), 174–186.


