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Temporally and spatially segregated discretization for
a coupled electromechanical myocardium model

A. A. Danilova bc de, A. A. Liogky∗a bcf, and F. A. Syomina

Abstract — In this paper, we propose a novel temporally and spatially segregated numerical scheme
to discretize the coupled electromechanical model of myocardium. We perform several numerical
experiments with activation of a myocardial slab with structural inhomogeneity and evaluate the de-
pendence of numerical errors on the size of spatial and temporal discretization steps. In our study, we
show that the spatial step for the mechanical equations hm 6 2.5 mm yields reasonable results with
noticeable errors only in the region of myocardial inhomogeneity. We also show that time step τm 6 1
ms can be used for temporal discretization of mechanical equations, and the propagation velocity of
the activation and contraction fronts differs from the reference one by no more than 1.3% for such
time step. Finally, we show that the increase of time discretization steps of the mechanical equations
τm and the monodomain equation τe leads to phase errors with opposite signs, and we can compensate
these errors by tuning the relationship between the time steps.

Keywords: Mathematical modelling, multiscale models, cardiac electromechanics, high performance
computing, multiphysics problems, numerical simulation, finite element method
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In recent years, mathematical modelling has been increasingly used in various

fields of medicine and, in particular, in cardiology. Actively developing models
of cardiac electromechanics are promising tools for simplifying clinical decision-
making, providing personalization in treatment approaches and obtaining new know-
ledge about various diseases and possible methods for their diagnosis and treatment.
For example, mathematical models are used to evaluate the effectiveness of anti-
arrhythmic drugs and defibrillation methods [7, 14, 21, 34, 35], studies of ischemia,
hypertension and other diseases [2, 5, 17, 28, 37].

The coupled cardiac electromechanics model usually includes the following
submodels: cellular active tension generation equations, cellular ionic equations, fi-

aInstitute of Mechanics, Lomonosov Moscow State University, Moscow 119192
bMarchuk Institute of Numerical Mathematics of the RAS, Moscow 119333
cSirius University of Science and Technology, Sochi 354340
dInstitute of Computer Science and Mathematical Modeling, Sechenov First Moscow State Med-

ical University, Moscow 119991
eMoscow Institute of Physics and Technology, Dolgoprudny 141701
fWorld-Class Research Center ‘Digital biodesign and personalized healthcare’, Sechenov First

Moscow State Medical University, Moscow 119991
∗ E-mail: al.liogky@yandex.ru

The study was performed at the Institute of Mechanics, Lomonosov Moscow State University,
and supported by the Russian Science Foundation project No. 22-71-10007.



2 A. A. Danilov, A. A. Liogky, and F. A. Syomin

nite strain mechanical equations, and equations of electrical activation propagation.
Importantly, each of these submodels has its own strongly different characteristic
spatial and temporal scales. Therefore, an extremely promising approach is the util-
ization of fully segregated numerical schemes, i.e., schemes that allow to use the
different time steps and even different spatial discretizations for modelling of indi-
vidual subprocesses. Several variants of segregated schemes have been previously
proposed to solve the cardiac electromechanical problems [3, 6, 8, 24, 27]. In our
scheme we couple electrical and mechanical parts through the state variables at the
integration points. The general idea behind this approach is not new [11, 18, 19, 26].
However, most works are based on discretization of space on a common mesh or
structured hierarchical meshes, require some interpolation procedures, and/or have
other limitations. In this paper we propose a novel numerical scheme to discretize
the coupled cardiac electromechanics model, which differs from the previously pro-
posed schemes in lifting requirement for certain consistency between the meshes
used for discretizations of the mechanics equations and the equations of electrical
activation propagation, as well as for utilization of unstructured tetrahedral rather
than hexahedral meshes. Our numerical scheme does not use interpolations from
one mesh to another, though some minor extra computations may be required in
one part of the model if the other part of the model uses a different computational
mesh.

In any numerical simulations, numerical errors are inevitable, and if their mag-
nitude is large enough, they can lead to misinterpretation of the obtained solu-
tions. On the other hand, in practical calculations we are always limited in time
and computational resources. As a result, it is necessary to search for a balance
between the accuracy of the obtained solution and the resources spent for obtain-
ing this solution. That is why, when using the model, it is necessary to investigate
what scale of computational errors occur in the model depending on the fineness of
the discretizations used. In this paper, we apply our numerical scheme to discret-
ize the coupled electromechanics model of the myocardium slab from the previous
work [32]. The numerical experiments performed within the CarNum cardiac mod-
elling framework [15] give us the estimates for spatial and time discretization steps
for the mechanical equations and the monodomain equation needed for a reasonable
accuracy. Since the model considered in our study uses rather simple variants of in-
dividual submodels, such as the Aliev–Panfilov model for ionic equations, the Fung-
type isotropic material to describe passive mechanical properties, the monodomain
equation to model activation propagation, etc., it is likely that for more complex
models the restrictions on the discretization steps will be more stringent, but the es-
timates presented in this study can still be used as a priori knowledge of the existing
restrictions.

In Section 1 we give a brief mathematical formulation of the coupled elec-
tromechanical model. Next, in Section 2, we provide a detailed description of our
proposed numerical scheme for the discretization of this model. And finally, in Sec-
tion 3 we present the results of numerical experiments and analyze the discretization
errors that occur when using the proposed scheme.
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1. Mathematical models of myocardial electromechanics
We consider a coupled model of cardiac electromechanics consisting of four in-
terconnected submodels: cardiac electrical propagation, continuum mechanics, cell
active contraction and cell-membrane electrophysiology. We denote the considered
piece of myocardium in an initial undeformed configuration by Ω, and we introduce
the following notations for the model variables: u : Ω→ R3 is the mechanical dis-
placement field of the tissue, υ : Ω→R is the transmembrane potential, w : Ω→Rnw

are state variables of cellular electrophysiology model, and a : Ω→ Rna are state
variables for model of cardiomyocyte contraction and its activation.

1.1. Monodomain equation

We use a monodomain model [25] as a model of electrical propagation, which in
the initial configuration reads as follows:

Cm
∂v
∂ t
−∇ · (σ∇v)+ iion(v,w) = istim(t), X ∈Ω

with an insulating boundary condition

(σ∇v) ·N = 0, X ∈ ∂Ω.

Here σ is the conductivity tensor given by

σ = σiso I+σaniso f⊗ f

variation of the normalized membrane capacitance Cm depends on the fibers strain
upon their stretch to account for the mechano-electrical feedback and is described
by the equation [32]:

∂Cm

∂ t
= km(Km(λ f −1)+− (Cm−1)), X ∈Ω

the transmembrane ionic current iion is specified by an ionic model, istim is an ex-
ternal stimulation, (x)+ = (|x|+ x)/2, λ f =

√
(Ff,Ff) is the fiber stretch with de-

formation gradient F= I+∇u and fiber direction f, ‖f‖= 1.
For simplicity, we will further move the last ordinary differential equation

(ODE) to the system of the ODEs of cell-level electrophysiology and also assume
Cm is a component of w.

1.2. Membrane ionic model

We couple the monodomain equation with the Aliev–Panfilov (AP) ionic model [1]
given by

τ
∂ν

∂ t
=−

(
ε +

µ1ν

µ2 +u

)
(ν + ku(u−a−1)) , X ∈Ω
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which includes the nondimensional membrane potential u= (v−Vmin)/Vnorm, ν ∈w
is the ionic state variable, the ionic current

iion(u,ν) =
uVnorm

τ
( (1+ ki1)ν + k(u− (1+ ki2)a)(u−1) )

as well as parameters ε , µ1, µ2, k, a, τ , Vmin, Vnorm. Also here we introduce two
additional parameters ki1 and ki2, which will be used in numerical experiments to
simulate the heterogeneity of the material.

1.3. Continuum mechanical model

We describe the mechanical behaviour of the myocardium using the classical mo-
mentum balance equation which reads as follows:

ρ
∂ 2ui

∂ t2 −
3

∑
j=1

∇ jPi j = 0, i ∈ {1,2,3}, X ∈Ω

where ρ is a tissue density in the initial configuration, ui is the i-th component of
u, and P is the first Piola-Kirchhoff stress tensor. This equation is supplemented by
boundary conditions

PN+(k‖N⊗N+ k⊥(I−N⊗N))(u−uspr) =−pext JF−T N, X ∈ ∂Ω

where k‖ > 0 and k⊥ > 0 are normal and tangential spring mounting stiffnesses rel-
ative to a relaxed state uspr, respectively, pext is an external pressure on the boundary,
F= I+∇u, and J = det F.

Assuming the incompressibility of myocardial tissue and using the active stress
approach [22], we have the following decomposition:

P= Ppas +Pvol +Pcell

where the terms represent passive stress, near-incompressibility volumetric penalty
and cell-level stress including active stress, respectively. The first two terms are
given using scalar hyperelastic potentials as

Ptype =
∂Wtype(F)

∂F
, type ∈ {pas, vol}.

To describe the passive properties of the myocardium, the isochoric variant of the
Fung-type isotropic material [9] is considered

Wpas =
µ

2
(

exp
(
b tr(Ê2)

)
−1
)

and the volumetric term is given by

Wvol =
K
4
(J2−1−2lnJ))
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where Ê = 1
2(J
−2/3FTF− I) is the isochoric variant of the Green–Lagrange strain

tensor and µ , b, K are model parameters. In turn, the active stress acts only along
fibers and has the form:

Pcell = Tcell(λ f , ∂tλ f , a)
Ff⊗ f

λ f

where λ f =
√

(Ff,Ff) is the relative fiber stretch and ∂tλ f = ∂λ f /∂ t is the fiber
stretch-rate.

1.4. Cellular active tension generation

In this work, we took into account two cell-level stress variables: passive nonlinear-
elastic reaction of sarcomeric protein titin to strain Ttit and the active stress Tact
developed by contractile proteins myosin and actin due to Ca2+ activation of their
interaction and other mechano-chemical processes in muscle:

Tcell = Ttit +Tact.

The titin stress was initially set by the expression for a long protein chain (worm-
like chain model) adapted from [16]. In this study, we use its approximation by an
exponential polynomial of λ f :

Ttit = ttitελ ·

{
exp(q1ελ +q2ε2

λ
+q3ε3

λ
), ελ > 0

exp(q1ελ +q∗2ε2
λ
), otherwise,

ελ = λ f −1.

The coefficients here (see Table 2 for actual values) were set from fitting the tension-
strain curves for stretched sarcomers to simulation results in study [30], in which
the worm-like chain model [16] was used. The approximation allowed us to get
rid of the denominator that may approach zero during the solution of a nonlinear
system for macromechanics (motion equations and, potentially, incompressibility
equations). Moreover, though we could not find any reliable data on titin reaction
to shortening, we made the titin in our model stiff enough at λ f < 1 to avoid very
short sarcomere lengths at which the filaments would be damaged.

The cell-level active stress model is described by the computationally efficient
Syomin–Osepyan–Tsaturyan model [31]:

Tact = Tact(λ f , ∂tλ f , a)
∂a
∂ t

= ra(λ f , ∂tλ f , v, a), X ∈Ω.

The active tension in the cardiomyocyte model used in this study depends
on a number of cross-bridges formed by sarcomeric contractile proteins (n), the
ensemble-average displacement of cross-bridges in sarcomere δ , the fraction of the
cross-bridges being in strongly-bound force generated state (ϑ ) accompanied by
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their average displacement h, and the overlap zone of the contractile filaments W ,
which is piecewise linear function of the sarcomere strain. Explicitly, we choose W
as a function proposed in [29]:

W (λ f ) =



0, ls 6 l0
ls−l0

lm+2lz−l0
W0, l0 < ls 6 lm +2lz

W0 +(1−W0)
ls−lm−2lz

2la−lb−lm−2lz
, lm +2lz < ls 6 2la− lb

1, 2la− lb < ls 6 2la + lb
1− ls−2la−lb

lm−lb
, 2la + lb < ls 6 lm +2la

0, ls > lm +2la

where W0 = 2(lm + lz− la)
/
(lm− lb), ls = λ f ls0.

The constitutive equation for the active stress, with dimensionless δ (after divi-
sion by h) reads

Tact = p f 1ENmNxbhnW (λ f ) · (δ +ϑ).

For meanings and values of other parameters we refer to [31]. The variables stated
above belong to the set a of cell-level variables, which also includes concentrations
of activated regulatory proteins, calcium concentrations in different compartments
of a cell, and some other variables required for the specification of electromechan-
ical coupling. Here we focus only on the kinetic equations for contractile proteins, as
we use those to specify the approximation of δ , which make our numerical scheme
much more stable. The variables n and ϑ are defined by kinetic equations

∂n
∂ t

= kcb
(
k01
(
A2

1−n
)
− k10n

)
(∂nϑ)

∂ t
= kcb (k12n · (1−ϑ)− k21nϑ)

where kcb is a characteristic rate of the cross-bridges kinetics, A1 is the concentration
of regulatory complexes activated by Ca2+ ions in the overlap zone of the contract-
ile filaments (where the complexes affect cross-bridges binding sites), and ki j are
nondimensional kinetic rates for the corresponding transitions. The rates depend on
δ except for k21, which is constant, and k12 = k21e−γδ . Kinetic rates k01 and k10 are
defined as follows

k01 =

1, δ 6 0
δ ∗2

2

(δ ∗2−δ)
2 , δ > 0, k10 =

{
a10 +b10δ 2, δ 6 0
a10 +

δ

δ ∗2−δ
, δ > 0.

Meanwhile, the variation of δ depends on the rate of the sarcomeric strain (ls0λ f
in our setup) and the rates of the cross-bridges kinetics, as their attachment and
detachment change an average cross-bridge displacement:

(∂nδ )

∂ t
=

nls0

2h
∂λ f

∂ t
− kcbk10nδ
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or
∂δ

∂ t
=

ls0

2h
∂λ f

∂ t
− kcbk01(A2

1−1)δ
n

.

One can notice that the variation of δ is strongly coupled with mechanics
through the strain rate, while the active stress Tact depends on δ explicitly. It was
shown earlier [23] that the application of a segregated scheme, i. e., the usage of the
δ value from the previous time step in Tact for assembling Jacobian matrix for the
system of nonlinear equations for mechanics, resulted in a poor convergence of the
numerical solver. We found out that the scheme becomes stable if we assume that
the muscle contraction is a steady-state process at every single time step of discret-
ized motion equations. Thus, we can replace δ in Tact with its stationary counterpart
δstat. From stationary equations for n and δ we derive a quadratic or cubic equation
for δ depending on the strain

0 = β − k10δ

where

β =
ls0

2hkcb

∂λ f

∂ t

is nondimensional contraction velocity expressed in terms of degrees of freedom of
displacement field u. We note that β is constant at every time step of our segregated
scheme.

The expression for δstat values is

δstat =



3

√√√√√81β 2 +12a3
10/b10 +9β

18b10
− 2a10

3

√
12b2

10(
√

81β 2 +12a3
10/b10 +9β )

, β 6 0

β +a10δ ∗

2(a10−1)

(
1−

√
1− 4βδ ∗(a10−1)

(β +a10δ ∗)2

)
, 0 < β 6 β ∗

δ ∗2 , β > β ∗

β
∗ = δ

∗
2

(
a10 +

δ ∗2
δ ∗−δ ∗2

)
where β ∗ and δ ∗ are the upper limits of the stretch rate and the cross-bridges ‘elong-
ation’. Our tests showed that this approximation resulted in the δ values that were
very close to those obtained in ODE solution of the initial non-stationary equa-
tions for the duration of the time-step for macromechanics. It should also be noted
that, for the same purpose of better convergence, we used the ϑ value found in the
solution of ODE system for cell-level electromechanics in Tact instead of its quasi-
stationary approximation [31, 32].
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2. A segregated numerical approximation scheme
2.1. Space discretization

The myocardial computational domain Ω is discretized using a quasi-uniform un-
structured tetrahedral mesh Thm for cellular and three-dimensional mechanics mod-
els and The for monodomain and cellular ionic electrophysiology models, and the
meshes Thm and The are not in any way consistent with each other. In this paper, hm
and he represent the corresponding mesh sizes. In all further examples, the condi-
tion hm > he and the condition of exact coincidence of the physical boundaries of
the discretized domain ∂Thm = ∂The are satisfied. Note that the space-discretization
scheme of equations and intergrid interpolation operator described below allows
mismatching of boundaries ∂Thm and ∂The at the cost of additional errors.

Let V r
h be the classical Lagrange finite element space of piecewise polynomial

functions Pr of degree at most r on a tetrahedral mesh Th with set of cells Ch, i.e.,
V r

h = {v ∈ H1(Ω)∩C0(Ω) : v|c∈Pr(c) ∀c ∈ Ch}. Let Qs = {wq,ξξξ q}
nq
q=1 be an in-

ternal positive Gaussian quadrature formula for tetrahedra of the s-th polynomial or-
der of accuracy, i.e., for any f ∈Ps(c) it holds

∫
c f (x)dx= |c|∑nq

q=1 wq f
(

∑
4
v=1 ξ v

q pv
)
,

where c is a tetrahedron with vertices {pv}4
v=1. We denote the q-th quadrature point

on a cell c ∈ Ch as xc
q = ∑

4
v=1 ξ v

q pv and introduce a space Qs
h(Q

s) of discrete mesh
functions containing one degree of freedom at each quadrature point xc

q of each
mesh cell. For an arbitrary ph ∈Qs

h(Q
s) we denote its restriction to cell c by pc

h and
its value at the q-th quadrature point in c by (ph)

c
q. Also, we denote a projection

operator Ih : C0(Th)→Qs
h(Q

s) as (Ih p)c
q = p(xc

q) for any p ∈C0(Th). Finally, we
use the notation

4
∫

Th,Qs

f (ph,x)dx := ∑
c∈Th

|c|
nq

∑
q=1

wq f
(
(ph)

c
q, xc

q
)

to denote the approximate integral for the element-wise continuous function f de-
pending on a vector mesh-function ph ∈ [Qs

h(Q
s)]d . To calculate efficiently pro-

jections of finite element functions defined on a mesh Th1 onto the space of mesh
functions defined at the points of quadratures on another mesh Th2 corresponding
to a quadrature formula Qs2 , we use mapping c∗h2,h1

: Ch2×{1, . . . ,nq,2}→ Ch1 :

c∗h2,h1
(c2,q) = arg min

c1∈Ch1

(
min
y∈c1
||y−xc2

q ||
)

where Ch1 and Ch2 are sets of cells Th1 and Th2 , and nq,2 is the number of points in
Qs2 .

To solve the equations of continuous mechanics, as well as the monodomain
equation, we use the finite element method, at the same time we solve the cellu-
lar equations independently at the points of the quadratures on the corresponding
meshes. We describe the displacement field u as a continuous piecewise quad-
ratic function uhm ∈ [V 2

hm
]3 in the space [V 2

hm
]3 with the basis {ϕϕϕ i}Nu

i=1. Similarly,
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we describe the transmembrane voltage v as a continuous piecewise linear function
vhe ∈ V 1

he
in the space V 1

he
with the basis {ψi}NV

i=1. To calculate numerically integrals
arising in weak formulations of equations of continuous mechanics and propaga-
tion of electrical activation, we use the quadrature formulas Qsm = {wq,ξξξ q}

nq,m
q=1 and

Qse = {wq,ξξξ q}
nq,e
q=1, respectively. For the sake of brevity, the spaces Qsm

hm
(Qsm) and

Qse
he
(Qse) will be denoted by Qsm

hm
and Qse

he
, respectively. After discretization, the

state variables w are described by mesh function whe ∈ [Q
se
he
]nw on The , and the state

variables a are described by mesh functions ahm ∈ [Qsm
hm
]na on Thm .

Finally, the semi-discretized formulation of the coupled problem reads: Find
uhm ∈ [V 2

hm
]3, vhe ∈ V 1

he
, whe ∈ [Q

se
he
]nw , and ahm ∈ [Q

sm
hm
]na for any t ∈ [0,T ] such that

the following equations hold:∫
Thm

ρühm ·ϕϕϕ i dx+ 4
∫

Thm ,Q
sm
hm

P(Fhm , Ḟhm , ahm) : ∇ϕϕϕ i dx+
∫

∂Thm

pextJhmϕϕϕ i ·F−T
hm

Nhm ds

+
∫

∂Thm

[(k‖Nhm⊗Nhm + k⊥(I−Nhm⊗Nhm))(uhm− (uspr)hm)] ·ϕϕϕ i ds = 0

∀i ∈ {1, . . . ,Nu}

4
∫

The ,Q
se
he

Cm(whe) v̇heψi dx+
∫

The

∇ψi ·σ∇vhe dx+ 4
∫

The ,Q
se
he

iion(vhe , whe)ψi dx

=
∫

The

istimψi dx ∀i ∈ {1, . . . ,Nv}

(ẇhe)
c
q = rw(vhe(x

c
q), (IheFhm)

c
q, (whe)

c
q) ∀q ∈ {1, . . . ,nq,e}, ∀c ∈ Che

(ȧhm)
c
q = ra(Fhm(x

c
q), Ḟhm(x

c
q), (Ihmvhe)

c
q, (ahm)

c
q) ∀q ∈ {1, . . . ,nq,m}, ∀c ∈ Chm

where Fhm = I+∇uhm , Ḟhm = ∇u̇hm , Jhm = det Fhm , and Nhm is the external unit
normal to boundary of Thm . Expression Cm(whe) implies the corresponding com-
ponent from the vector whe . The intergrid projections are defined as (IheFhm)

c
q = I+

∑i: ϕϕϕ i|cm 6=0[uhm ]i ∇ϕϕϕ i(xc
q), where cm=c∗he,hm

(c,q), and (Ihmvhe)
c
q=∑i: ψi|ce 6=0[vhe ]i ψi(xc

q),
where ce = c∗hm,he

(c,q).

2.2. Time discretization

We use the Godunov splitting scheme [10] and iterate over time for each of the
considered submodels: cellular electrophysiology, cellular mechanics, monodomain
model and continuous mechanics. Similarly to [24], we use fractional time steps
relative to a base time step of the continuous mechanical model τm = ∆t, namely,
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for the monodomain model we use time step τe = ∆t/Ne and the cellular models are
advanced in time with step τo = ∆t/No, No = koNe, where Ne,No,ko ∈ N.

We denote vectors of degrees of freedom for displacements and transmembrane
potential using the capital letters U and V . Since the mesh functions whe and ahm

are collocated at quadrature points, we do not use special notations for the degrees
of freedom of these functions. For the sake of simplicity, we drop the lower indices
hm and he, and move the cell index c down so that the elements of the vectors are
numbered by the lower multi-index q,c. The superscript ‘n+ k/Ne + l/No’ denotes
values at the moment tn+k/Ne+l/No = nτm+kτe+ lτo. Starting with n = k = l = 0 and
using these notations, we describe the process of solving equations as follows.

1. Perform ko iterations over time to solve cellular ODEs. The ODEs are solved
independently at each point of the quadrature by the CVODE package [4, 12]
with a stiff solver based on backward differentiation formulas (BDFs) with
order varying between 1 and 5. The first order BDF is reduced to the implicit
Euler scheme:

wn+k/Ne+(l+1)/No
qe,ce −wn+k/Ne+l/No

qe,ce

τo
= rw(V n+k/Ne , Un, wn+k/Ne+(l+1)/No

qe,ce )

∀qe ∈ {1, . . . ,nq,e}, ∀ce ∈ Che

an+k/Ne+(l+1)/No
qm,cm −an+k/Ne+l/No

qm,cm

τo
= ra(Un, U̇n, V n+k/Ne , an+k/Ne+(l+1)/No

qm,cm )

∀qm ∈ {1, . . . ,nq,m}, ∀cm ∈ Chm

where U̇n is defined below.

2. Perform one iteration in time to solve the monodomain equation. An implicit-
explicit (IMEX) scheme is used for time discretization leading to a linear
problem:

MCm(wn+(k+1)/Ne)V̇ n+(k+1)/Ne +A σV n+(k+1)/Ne +Iion(V n+k/Ne , wn+(k+1)/Ne)

= I
n+(k+1)/Ne

stim

where

V̇ n+(k+1)/Ne :=
V n+(k+1)/Ne−V n+k/Ne

τe
, MCm

i j (w) := 4
∫

The ,Q
se
he

Cm(w) ψ jψi dx

A σ
i j :=

∫
The

∇ψi ·σ∇ψ j dx, Iion,i(V, w) := 4
∫

The ,Q
se
he

iion(vhe(V ), w)ψi dx

I
n+(k+1)/Ne

stim,i :=
∫

The

istim(tn+(k+1)/Ne) ψi dx
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3. Repeat the first two steps Ne− 1 more times. Then, solve a nonlinear algeb-
raic system arising from continuous mechanics equations discretized by the
implicit constant acceleration scheme:

M ρÜn+1 +P(Un+1,U̇n+1,an+1)+ p̂(Un+1)+G (Un+1−Un+1
spr ) = 0

where

Ün+1 :=
Un+1−2Un +Un−1

τ2
m

, U̇n+1 :=
Un+1−Un

τm
, M ρ

i j :=
∫

Thm

ρ ϕϕϕ i ·ϕϕϕ j dx

Pi(U,U̇ ,a) := 4
∫

Thm ,Q
sm
hm

P(Fhm(U), Ḟhm(U̇), a) : ∇ϕϕϕ i dx

p̂i(U) :=
∫

∂Thm

ϕϕϕ i · [pextJhm(U)F−T
hm

(U)]Nhm ds

Gi j :=
∫

∂Thm

[k⊥(ϕϕϕ i·ϕϕϕ j)+(k‖− k⊥)(Nhm ·ϕϕϕ i)(Nhm ·ϕϕϕ j)]ds

4. Advance in time, n := n+1, repeating steps 1–3 until tn > T .

The nonlinear system that arises after the discretization of the continuous mech-
anics equation is solved by the inexact Newton method implemented in the KinSol
package [12, 13]. To solve linear systems arising at Newton steps and after discret-
ization of the monodomain equation, we use the iterative BiCGStab solver with the
second order Crout-ILU preconditioner MPT ILUC implemented in the INMOST
framework [33, 36]. The cardiac electromechanical framework CarNum [15] was
used to build the overall numerical scheme, assemble the linear systems, and cus-
tomize the exchanges and interactions between the individual submodels.

3. Numerical experiments
In order to investigate the impact of mesh steps in discretizing electrophysiological
and mechanical processes, we consider a series of experiments on a slab geometry
Ω= [0, kxL]× [0, kyL]× [0, kzL], where L is a base length unit and kx,ky,kz ∈N. For
this geometry, we first construct a uniform cubic mesh with steps h = L/a, where
a ∈ N is the division number. Each element of the cubic mesh is divided into 6 tet-
rahedra resulting in a consistent tetrahedral mesh Th. We add indices e and m to
distinguish between parameters for electrical and mechanical parts of the problem.
Unless otherwise stated, the model parameters from Table 2 are used in all experi-
ments. To solve nonlinear systems arising from the discretization of mechanics, the
relative drop of an initial residual by 108 times is used as a stop criterion, and for
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linear systems arising from the discretization of the monodomain equation, the rel-
ative drop of an initial residual by 1012 times is used. The ODEs were solved using
the CVODE package [4] with parameters reltol = 10−6 and abstol = 10−14.

3.1. Electrophysiology benchmark

First of all, we need to find out which mesh steps are necessary to reproduce cor-
rectly the electrophysiological processes solely. For this purpose, we turn off the
mechanical processes by setting u(x, t) = 0 = const and perform slightly modified
benchmark [20] for activation of a piece of myocardium:
Geometry: a slab with L = 10 mm, kx = 9, ky = kz = 1;
Fibers: f = (1,0,0)T ;

Stimulus: istim(x, t) =

{
îstim, x ∈ [0, 2.5]3 mm, t ∈ [0, 20] ms
0, otherwise,

where îstim = 40 µA/µF ;
Discretization: the mesh is constructed with the division number ae ∈ {4, . . . ,24},
the monodomain equations are discretized with the quadrature order se ∈ {1, . . . ,5},
τe = τo = 0.01 ms.

As can be seen in Fig. 1, the distribution of the activation time along the slab
diagonal almost coincides with deviation less than 1 ms at ae > 12, i.e., he = L/ae 6
0.8 mm. In addition, it can be seen that the activation times depend mainly on the
mesh step he rather than se, i.e., the higher orders of the used quadratures se play
insignificant role. In the figure, we do not plot the graphs for se > 2 because visually
the results are indistinguishable from the case se = 2. Moreover, if we consider Cm as
a piecewise constant on the cell function and compute the integrals included in the
mass term exactly, i.e., take M̂Cm

i j =
∫
The

Cmψiψ j dx, then for se = 1 the results also
coincide visually with the case se = 2, and actually differ by no more than 0.01 ms.
Thus, to simplify the calculation without significant loss in accuracy, we recommend
to use the mesh step he 6 0.8 mm and the mid point quadrature corresponding to
se = 1.

3.2. Activation of heterogeneous tissue

In this experiment we study the influence of the choice of spatial discretization of
the mechanics equation on the numerical result of activation of a heterogeneous
piece of myocardium [32] (see Fig. 2):
Geometry: a slab with L = 10 mm, kx = ky = 9, kz = 1;
Time: t ∈ [0,T ], T = 1000 ms;
Fibers: f = (1,0,0)T ;

Stimulus: istim(x, t) =

{
îstim · fhat(t), x ∈ [0, 30]× [0, 5]× [0, 10] mm
0, otherwise,

where îstim = 25 µA/µF , fhat(t) = fw
(
(t−Tbeg)/tset

)
− fw ((t− (Tend− tset))/tset),
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Figure 1. Left: a sketch of the electrophysiology benchmark, the stimulation region is marked in
yellow, the black frames show the boundary of the computational region, and the green line shows
the diagonal along which the results were plotted. Right: activation times along the diagonal of slab
90× 10× 10 mm for meshes with step he = L/ae, L = 10 mm. The results are presented for the
quadrature orders se = 1 (solid line) and se = 2 (dashed line). The main window shows plots only for
se = 1.

fw(x) = (|x|− |x−1|)/2, and Tbeg = 100 ms, Tend = 103 ms, tset = 1 ms;
Heterogeneity is introduced through additional parameters of the Aliev–Panfilov
model as

ki1(x) = k̂i1 fH(x,y), ki2(x) = k̂i2 fH(x,y)

fH(x,y) =


1, (x,y) ∈ [x1, x2]× [y1, y2]

0, (x,y) 6∈ [x1−dx, x2 +dx]× [y1−dy, y2 +dy]

1− ρ2(x,[x1,x2])+ρ2(y,[y1,y2])
I(x 6∈[x1,x2])d2

x+I(y6∈[y1,y2])d2
y
, otherwise

where ρ(x, [x1,x2]) = miny∈[x1,x2] |y− x|, I(·) is an indicator function, x1 = 27 mm,
x2 = 36 mm, y1 = 0 mm, y2 = 36 mm, dx = 1.35 mm, dy = 3.6 mm, k̂i1 = 5 and k̂i2 =
2. Physically, this corresponds to a tissue sample having a region with an increased
excitation threshold and an increased outward currents of positive ions through the
cell membrane preventing the tissue excitation and reducing its conductivity. The
region also has a ‘grey’ zone within which the properties change gradually.
Pressure: pext = p̂min(1, t/Tp)I(x ∈ Γr), where Γr = {90}× [0, 90]× [0,10] mm,
p̂ = 1 kPa, Tp = 100 ms.
Spring fastening is applied on three boundaries

1. on Γl = {0}× [0, 90]× [0,10] we set k⊥ = k‖ = 20 kPa, uspr = 0.

2. on Γb = [0, 90]×{0}× [0,10] we set k⊥ = 20 kPa, k‖ = 0 kPa, uspr = 0.

3. on Γr = {90}× [0, 90]× [0,10] we impose the condition of spring fastening
starting from the moment t = Tp = 100 ms considering the springs at that
moment not loaded, in other words, we set the relaxed state as uspr(X, t) =
u(X,Tp)I(t > Tp) and stiffness k⊥ = k‖ = 20I(t > Tp) kPa.
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Figure 2. Propagation of transmembrane potential v in the experiment with heterogeneous myocar-
dium activation.

Discretization: we consider a number of cases with different division numbers ae ∈
{10, 12}, am ∈ {2, . . . ,12}, and different time steps, with τm varying from 0.1 ms
to 1 ms, and τe varying from 0.01 ms up to 1 ms. The time step for cellular models
is fixed to τo = 0.01 ms. For all calculations except the reference one (to be defined
below), the quadrature orders sm = 3 and se = 1 are used.
Method of comparison: to compare and analyze the results obtained on different
grids, we consider the values of u, v and λ f at five points pi = {15i,15i,10i/3}, i ∈
{1, . . . ,5} lying on the main diagonal of the slab, with the point p2 lying in the
region of the material heterogeneity. The numerical solution obtained on a common
tetrahedral mesh am = ae = 12 with the discretization parameters sm = se = 5, τm =
0.1 ms, τe = τo = 0.01 ms is chosen to be the reference solution. To assess the
numerical error of the solutions, we considered the absolute value of the deviation
of the variables

εvar(t) = max
i∈{1,...,5}

||var(pi, t)−varref(pi, t)||, var ∈ {u, v, λ f }

where the upper index ‘ref’ indicates the corresponding variable of the reference
solution. Also, to demonstrate the magnitude of the phase errors for all the con-
sidered cases at all five points, we calculated the moment of activation

tact = min{t > Tp : v(t) = 0}

and the moment of contraction

tcontr = min{t > Tp : λ f (t) = λ
∗
f }

where λ ∗f =
1
5 ∑

5
i=1 (λ

ref
f (pi,T )+λ ref

f (pi,0))/2≈ 1.06382.
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Figure 3. Plots of values and their deviations from the reference solution for the transmembrane
potential v (first column), displacement u (second column), and fiber stretch λ f (third column). The
first row shows the evolution of the considered quantities calculated at five points p1, . . . ,p5, with
the solid lines corresponding to the reference solution and the dashed lines corresponding to the case
ae = 10, am = 4, τm = 1, τe = 0.01. The second row shows the deviation values from the reference
solution εv, εu, and ελ f

for different values of am at fixed ae = 12, τe = 0.01,τm = 0.1. The third line
shows the deviation values εv, εu, and ελ f

for different values of τm when ae = 12, am = 4, τe = 0.01
are fixed. The fourth row shows the deviation values εv, εu, and ελ f

for different values of τe when
ae = 10, am = 4, τm = 1 are fixed. Plots have the same horizontal axis showing time t in ms as in the
fourth row.
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Figure 4. The wall time of computations per 1 ms in the numerical experiment with heterogeneous
myocardium for separate stages: assembling of Jacobians and residuals for mechanics and monodo-
main, solution of arising linear and nonlinear algebraic systems, and solution of cellular ODEs. The
vertical axis shows the wall time of computations in seconds, and the horizontal axis shows the num-
ber of ms of the numerical experiment. The pie chart depicts the contribution of each step to the total
computation time. On the left panel: results for the reference case, for which the total computation
time was 165 hours on 512 cores. On the right panel: results for the case ae = 10, am = 4, τm = 1 ms,
τe = 0.05 ms, the total computation time for which was 3 hours on 156 cores. The computations were
obtained on a high performance computing cluster at Sechenov University equipped with Intel(R)
Xeon(R) Gold 6230R CPUs @ 2.10GHz.

First of all, we want to understand how large can be a mesh size for the mech-
anical part of the problem. To this end, we performed a number of experiments with
fixed ae = 12 and am varying from 9 to 2 and present the results in the second row
of Fig. 3. Large error spikes for v occur at times when this quantity changes most
rapidly at some points pi, and are caused by phase errors. This can also be seen
in the first row of Fig. 3, where the solid line shows the reference solution and the
dashed line shows the solution for ae = 10, am = 4, τm = 1 ms. Although the differ-
ence of the solutions in the second row reaches 13 mV, nevertheless the plots for v
visually coincide in the first row. Passing from am = 4 to am = 3 increases sharply
the error in the stretch ελ f from about 0.005 to 0.04, that is very significant since
|λ f − 1| < 0.3. As can be seen in the first row, this error is contributed mainly by
the point belonging to the inhomogeneity region. This is probably due to the fact
that the inhomogeneity region is poorly resolved on the coarse mesh Thm . At the
same time, the absolute displacement errors εu remain moderate even at am = 3. In
general, it can be concluded that using am = 4, i.e., hm 6 2.5 mm, is sufficient to
obtain reasonable accuracy.

Next, we investigate the effect of τm on the quality of the solutions. We per-
formed a series of experiments with different values of τm and fixed ae = 12, am = 4,
τe = 0.01 ms. The third row of Fig. 3 shows that an increase of τm from 0.1 to 1
leads to approximately linear increase in the error for u from 0.05 to 0.4 mm. In
contrast, the effect of increasing τm on v and λ f was mainly phase-specific and, as
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Table 1. Activation and contraction times in a numerical experiment with a heterogeneous piece of
myocardium at different discretization parameters. The first part of the table shows the activation
and contraction times obtained in the reference calculation. The second part of the table shows the
deviations of the times from the reference values ∆tact = tact− tref

act , ∆tcontr = tcontr− tref
contr. All times in

the table are in milliseconds. Values at point p2 are not shown because the activation and contraction
criteria were not met at this point.

case \ point p1 p3 p4 p5

ae am τm τe tact tcontr tact tcontr tact tcontr tact tcontr

12 12 0.1 0.01 154.473 185.206 289.248 363.155 340.603 451.565 394.210 535.809

ae am τm τe ∆tact ∆tcontr ∆tact ∆tcontr ∆tact ∆tcontr ∆tact ∆tcontr

12 9 0.1 0.01 −0.136 −0.098 −0.554 −0.734 −0.893 −1.475 −0.827 −0.964
12 6 0.1 0.01 −0.137 −0.119 −0.558 −0.725 −0.896 −0.939 −0.832 −1.347
12 4 0.1 0.01 −0.137 −0.174 −0.562 −1.011 −0.900 −1.416 −0.837 −0.206
12 3 0.1 0.01 −0.139 −0.159 −0.567 −1.253 −0.906 −1.030 −0.846 −1.754
12 2 0.1 0.01 −0.142 −0.375 −0.586 0.122 −0.926 −2.235 −0.872 −1.286
12 4 0.2 0.01 −0.139 −0.203 −0.573 −1.224 −0.915 −0.940 −0.861 −2.333
12 4 0.5 0.01 −0.144 −0.303 −0.605 −1.748 −0.958 −2.243 −0.932 −3.090
12 4 1.0 0.01 −0.152 −0.516 −0.659 −2.413 −1.028 −3.420 −1.047 −4.745
12 4 2.0 0.01 1.176 −1.179 −0.500 −4.041 −1.091 −5.540 −0.061 −7.188
10 4 0.1 0.01 −0.312 −0.251 −1.383 −2.074 −1.837 −2.374 −2.225 −3.319
10 4 1.0 0.01 −0.326 −0.605 −1.490 −3.623 −1.977 −4.718 −2.483 −5.653
10 4 1.0 0.05 −0.185 −0.445 −0.973 −3.069 −1.438 −2.690 −1.682 −4.951
10 4 1.0 0.10 −0.011 −0.243 −0.373 −2.205 −0.805 −1.871 −0.808 −3.831
10 4 1.0 0.20 0.327 0.072 0.728 −0.681 1.072 −0.089 0.689 −1.965
10 4 1.0 0.50 1.809 1.185 4.918 3.937 5.692 4.810 6.266 3.996
10 4 1.0 1.00 3.865 2.653 11.305 11.819 13.210 12.712 15.117 12.964

can be seen in Table 1, led mainly to a small decrease in the activation and con-
traction times. Assuming that the relative (compared with the reference solution)
errors of activation and contraction front propagation velocities can be estimated
as (tact− tref

act)/(t
ref
act−Tp), where Tp = 100 ms is the start of stimulation time, we

can say that during the increase in τm from 0.1 to 1 ms, the activation and excita-
tion front propagation velocity increased by approximately 0.7%. The phase error
at τm = 2 ms differs from all other cases and is expressed in the slowing down of the
front propagation. This is probably caused by the fact that at such large step certain
nonlinear effects are reproduced incorrectly. In general, we conclude that if an error
in the front propagation velocity of the order of 1% is acceptable, we can use the
time step τm = 1 ms for mechanics.

Finally, we vary τe at fixed ae = 10, am = 4, τm = 1 ms. For all quantities in-
vestigated, the error in changing τe from 0.01 to 1 ms is mainly phase-related. As
expected, increasing τe leads to slower front propagation, rf. Table 1. However, as
can be seen in the fourth row of Fig. 3 and Table 1, as the step τe increases from
0.01 to 1, the modulus of the error first drops and only then increases. This unex-
pected result is due to the fact that phase errors caused by time discretization for
mechanics and electrophysiology have opposite signs and thus there is such a rela-
tion between τe and τm, at which the arising phase errors are mutually compensated.
This is observed at τe between 0.1 and 0.3 ms.

We also measured the computation times for separate stages: assembling of lin-
ear systems for mechanics and monodomain, solving these linear systems while
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Table 2. The parameters of submodels (two left panels) and initial conditions of state variables (right
panel) are given by default, i.e., used in numerical experiments if other values were not explicitly
specified when setting them up. For the active stress model (middle panel), only those parameters
whose values differed from those presented in [31, Table 1] are given.

Models

Monodomain model
σiso 0.5 mm2/ms
σaniso 4.5 mm2/ms
Membrane capacitance Cm
km 10−3 ms−1

Km 2.5 —
Aliev–Panfilov model
Vmin −80 mV
Vnorm 100 mV
τ 12.9 ms
µ1 0.2 —
µ2 0.3 —
k 8 —
a 0.1 —
ki1 0 —
ki2 0 —
Mechanical model
ρ 1 mg/mm3

µ 0.55 kPa
b 2.85 —
K 50 kPa
Titin elastic model
ttit 1.0297 kPa
q1 37.02159500 —
q2 −257.47066444 —
q∗2 772.41199331 —
q3 556.32176365 —

Active stress model

ls0 1.90 ·10−3 mm
l0 1.30 ·10−3 mm
lm 1.63 ·10−3 mm
lz 0.035 ·10−3 mm
la 1.12 ·10−3 mm
lb 0.16 ·10−3 mm
p f 1 0.5 —
E 2.5 ·10−3 mN/mm
Nm 283 ·106 mm−2

Nxb 150 —
h 10−5 mm
kcb 75 ·10−3 ms−1

k21 20 —
γ 4 —
δ ∗ 0.4 —
δ ∗2 0.37 —
a10 1.5 —
b10 8.5 —
Bcyt 130 µM
Gxfer 3.8 ·10−3 ms−1

Gleak 3 ·10−5 ms−1

kNCX 0.8 —
k4 2.5 ·10−4 ms−1

K2 125 —
KR 200 µM

Initial conditions

Monodomain state
v −80 mV
Membrane capacitance
Cm 1 —
AP states
ν 0.02 —
Mechanical states
u 0 mm
∂t u 0 mm/ms
Active stress states
n 10−6 —
A1 0.018 —
A2 0.018 —
c 0.078 µM
cSS 0.080 µM
cSR 616 µM
p 0.37 —
R 0.265 —
ϑ 0.5 —

dealing with linear or nonlinear algebraic problems, and solving cellular ODEs.
In Fig. 4, we present the corresponding results for the reference case and the case
with ae = 10, am = 4, τm = 1, τe = 0.05, with the total time for the former and latter
computations being approximately 165h on 512 cores and 3h on 156 cores, respect-
ively. It is noteworthy that the difference in the rate of propagation of the activation
front between the solutions does not exceed 1.2%, and the difference in the actual
values of v, u, and λ f is noticeable only in the region where myocardial properties
change dramatically. In other words, for practical calculations it is not necessary
to perform such heavy computations as were done to obtain the reference solution,
but it is enough to use much coarser discretization with ae = 10, am = 4, τm = 1,
τe = 0.05. Note that in this work we did not seek to minimize the computation time
and did not make special adjustments of preconditioners and other tunings, so the
presented data on wall time serve only for demonstration and can be improved.

4. Conclusions

In this paper, we presented the fully temporally and spatially segregated scheme for
solving coupled electromechanical cardiac problems, including the submodels of
cellular electrophysiology and mechanics, as well as the monodomain submodel
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of transmembrane potential propagation and the submodel of continuous three-
dimensional mechanics. The proposed numerical scheme couples electrical and
mechanical parts through the state variables at the integration points on two separate
unstructured tetrahedral meshes without the need for interpolations from one mesh
to another. Analyzing our discretization scheme for the monodomain equation on
the well-known electrophysiological benchmark [20], we found that a mesh step of
he 6 0.8∼ 1 mm is optimal from the point of view of solution accuracy. Further, we
analyzed the impact of spatial discretization resolution for the mechanical part of the
equations and temporal discretization resolution for both mechanical and monodo-
main equations on the electromechanical problem with inhomogeneous myocardial
slab [32]. We found that the mesh step hm 6 2.5 mm can be used with reasonable
accuracy for the spatial discretization of the mechanical part. We also found that the
time discretization of both the mechanical equations and the monodomain equation
leads mainly to phase errors with opposite signs, which can be exploited for mutual
suppression of errors. Finally, we have considered two examples of calculations and
demonstrated how the use of the proposed segregated numerical scheme can speed
up the calculations compared to the conventional scheme using a common mesh
for the monodomain equation and mechanics: the speed-up factor 101–102 with a
relatively small loss of accuracy is obtained.
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Numerical Mathematics, Russian Academy of Sciences, and Sirius University of
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