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Towards realistic blood cell biomechanics in microvascular
thrombosis simulations

A. V. Belyaeva

Abstract — The paper is devoted to a three-dimensional mesoscale hemodynamic model for simu-
lations of microvascular blood flows at cellular resolution. The focus is on creating a more accurate
biomechanical model of red blood cells for further use in models of hemostasis and thrombosis. The
presented model effectively and accurately reproduces peculiarities of blood flow under realistic hy-
drodynamic conditions in arterioles, venules, and capillaries, including the Fahraeus–Lindquist effect
and subsequent platelet margination. In addition, shear-dependent platelet aggregation can also be
captured using the proposed approach.
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Hemodynamic modelling nowadays is one of the well-established theoretical ap-
proaches for biomedical research of physiological flows. It includes diverse variants
of computational approaches applied to the blood flows in vivo and in vitro: compu-
tational fluid dynamics, particle dynamics, kinetic and stochastic modelling, cellular
automata, etc. [10, 65, 24, 68].

There are several degrees of spacial detalization of blood in these mathemat-
ical models, depending on the particular phenomena of interest. For instance, the
lumped-parameter models give a simplified representation of the circulatory sys-
tem by its equivalence to the electrical circuits, due to the linear flow rate-pressure
relation of Hagen–Poiseuille law. Advanced low-dimensional mathematical mod-
els of the blood circulatory system account for the transient flows, vessel elasticity,
turbulence and non-Newtonian rheology of blood, thus giving an efficient tool for
blood flow simulations on a macroscopic length scale, such as whole organism or
anatomic compartments [3, 55, 54].

Other classes of problems address local phenomena in blood vessels and thus
require modelling approaches that operate at smaller length scales, reaching the cel-
lular and even the molecular level of biophysical details [23, 42, 12, 61, 22]. Many
processes in blood vessels, such as thrombosis and hemostasis, rely on biomechan-
ical (rheological) and biochemical effects that are multi-scale by their nature.
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The historical experiments of Fahraeus and Lindquist suggest that in narrow
tubes (< 100µm) the apparent relative viscosity of blood depends on the tube dia-
meter [21]. It is also known that platelet collisions with red blood cells provide their
transport to the vessel walls and promote their adhesion to injuries [59, 60]. Appar-
ently fluid mechanics plays a crucial role in thrombogenesis [5, 46, 26, 44]. Concen-
trations of cells, their collisions and aggregation, drag forces, shear rates and flow
velocities, rheology, as well as mechano-sensitivity and conformational changes of
proteins should be taken into account in models of arterial and microvascular throm-
bosis [56, 50, 59, 60, 38, 9]. Therefore, a numerical approach that is capable of ac-
counting for all the biomechanical details of blood flow at molecular and cellular
scales is tremendously important for thrombosis and hemostasis modelling.

This paper addresses some issues related to 3D computer simulations of blood
flows and thrombosis in microvasculature. The study uses a cell-resolving biomech-
anical approach implemented as a hybrid model that combines continuum repres-
entation for the fluid (blood plasma) and particle dynamics for the blood cells, as
well as the proteins involved in thrombosis. The main goal of the present paper is to
modify the existing mechanical model of red blood cells, to validate the new model
against the experimental data, and to demonstrate its capabilities for computational
study of shear-induced platelet aggregation and thrombosis in arterioles, venules
and capillaries.

1. Materials and methods

By means of 3D computer simulations the present paper investigates a pressure-
driven flow of a dense suspension of red blood cells (RBCs), blood platelets and von
Willebrand factor (VWF) in a cylindrical microtube. The recruitment of platelets
to the wall-bound von Willebrand factor multimers was inspected as a model of
thrombosis in inflamed microvessel [48].

The simulations are carried out in a rectangular box bx× by× bz filled with a
viscous fluid. A cylindrical pore is introduced to imitate the internal space of a blood
vessel (see Fig. 1). The main axis of the pore was oriented in the x-direction of the
simulation box. The inner volume of the pore is available for the cells and the fluid.
The walls are meant to be impenetrable for particles and the fluid. Besides that, the
hydrodynamic no-slip condition is also introduced at the vessel walls. At x = 0 and
x = bx the periodic boundary conditions are imposed for both particles and fluid,
while the pressure gradient along the x-direction was established as an external
body force exerted on the fluid. In addition, an auxillary setup corresponding to
plane shear flow is used for validations and tests. In this case constant fluid velocity
is imposed on the solid walls located at z = 0 and z = bz, periodic conditions — at
other boundaries, and the external pressure gradient is set to zero.

The blood cells (platelets and RBCs) were also introduced explicitely as de-
formable objects that were able to interact with each other, with polymers and with
the fluid. The physical model of these interactions was governed by a set of pre-
scribed forces and constraints. The numerical method was based on a combination
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Figure 1. Geometry used in simulations for the pressure-driven (Poiseuille) flow: 3D view (left) and
front view (right). The grey parts correspond to solid, impenetrable walls and represent the geomet-
rical constraints. A cylindrical x-oriented pore representing the internal space of a blood vessel was
introduced in the simulation box. The colour mapping on the right indicates (as an example) that
velocity magnitude is zero at the inner walls of the pore.

of the Lattice Boltzmann method (LBM) [58] with the Particle Dynamics (PD) [18].
The model consists of three principal components: viscous fluid (blood plasma),
blood cells and the von Willebrand factor multimers (polymers). The description of
each component is presented further in this section. In most of the simulations the
following scales for length, force and time were used: [L] = 10−6 m, [F ] = 10−9

N, [t] = 10−4 s. The physical parameters were non-dimensionalized according to
this system of units. The time step for particle dynamics for most of the presented
computations was set ∆tp = 0.0025[t] to achieve a balance between efficiency and
numerical stability. The model allows for multi-time-step integration, ∆tLB = N∆tp,
however for accuracy N = 1 in all presented computations. The simulation runs
with a smaller step ∆tp = 0.002[t] demonstrated no significant changes in system
dynamics.

Before each simulation run, a certain number of VWF multimers was attached
to the inner surface of the tube. The same amount of VWF multimers was freely
suspended in the fluid. Then polymer-fluid system was equilibrated. After that the
blood cells were placed in a simulation box at certain locations inside the pore, and
the simulation started. The blood vessel radius, the number of VWF multimers, as
well as the number of cells was varied during this study.

1.1. Fluid model

Continuum representation was used for the modelling of blood plasma, and Lattice
Boltzmann method (LBM) was used to calculate fluid velocity in the simulation
box. LBM is used as a fast solver for hydrodynamic equations, that inherits from
lattice gas automata simulations [58]. The method rests upon the Boltzmann kin-
etic equation that describes spacial-temporal changes of a one-particle distribution
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function f (x,u, t):
∂ f
∂ t

+u · ∂ f
∂x

+
F
m
· ∂ f

∂u
=− f − f eq

τ
(1.1)

where the term in the right hand side is the collision integral in Bhatnagar–Gross–
Krook form.

A discretization scheme D3Q19 has been used in this work, i.e., the fluid is
treated as packets of fluid particles moving from one node to a neighbouring node
of a 3-dimensional periodic cubic grid in 19 possible directions. A regular cubic
grid of Eulerian spatial sites {x} with constant spacing ∆x = [L] was introduced,
as well as a set of discrete microscopic velocities {ci}. The following notation is
conventionally used fi(x, t)≡ f (x,ci, t) and

ci = c×

 (0,0,0), i = 0
(±1,0,0),(0,±1,0),(0,0,±1), i = 1,2, ...,6
(±1,±1,0),(0,±1,±1),(±1,0,±1), i = 7,8, ...,18 .

(1.2)

The discretized function fi(x, t) obeys the following equation in the case of the
thermalized fluid [18, 57, 31, 1]:

fi(x+ ci∆t, t +∆t)− fi(x, t) =−
∆t
τ

[
fi(x, t)− f eq

i (x, t)
]
+∆t ·Fi(x, t)+χi(x, t),

(1.3)
and the evolution of the system could be found by consequent iterations. For setting
up the no-slip hydrodynamic boundaries the ‘bounce back’ method is used [18].

The equilibrium distribution function f eq
i (x, t) corresponds to the series expan-

sion of Maxwell-Boltzmann distribution for small velocities [58, 14]. The relaxation
time τ is related to the kinematic viscosity of the fluid ν = c2

s (τ−∆t/2) and the lat-
tice speed of sound c2

s . The forcing term Fi(x, t) accounts for any external forces on
the fluid, including particle-to-fluid coupling forces:

Fi(x, t) =
(

1− ∆t
2τ

)
wi

[
ci−u

c2
s

+
ci ·u
c4

s
ci

]
·F (1.4)

where F is the body force density, the normalized weights {wi} correspond to the
chosen velocity set {ci}. Fluid velocity and density in this case are derived as fol-
lows [31]:

ρu =∑
i

ci fi +
1
2

∆t ·F (1.5)

ρ = ∑
i

fi. (1.6)

The random modes χi(x, t) are fluctuating terms for the thermal noise in the
fluid [18, 57]. The thermalized implementation is essentially required for the correct
representation of VWF proteins and their conformations [6, 38].
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1.2. Mechanical models for red blood cells and platelets

1.2.1. Bonded interactions. Each blood cell in the model is represented by a tri-
angular mesh of Lagrangian particles (LPs) evenly spread over a cell membrane.
Red blood cells (RBCs) and blood platelets differ by their sizes, shapes and mech-
anical properties. Therefore, for each cell a template shape was used to set the pos-
itions of corresponding LPs in the simulation box before a simulation run. Particle
dynamics approach is used together with Lattice Boltzmann method and viscous
fluid-structure coupling to describe the transient dynamics of the system and to ob-
tain a cell-level hemodynamic picture. The position r and the velocity v of each LP
were found from the solution of the following differential equations:

dv
dt

=
(Felast +Fint +Fvisc)

m
,

dr
dt

= v (1.7)

where total force exerted on the mesh node consists of the elastic forces Felast, the
non-bonded interactions Fint and the dissipative forces or viscous drag Fvisc.

The elastic forces account for the elasticity from stretching of edges, bending of
dihedral angles between adjacent faces, as well as conservation of surface area and
volume: Felast = Fs +Fb +Fa +Fv.

In the present study two versions of the material model for the blood cells are
considered and compared. The ‘old model’ was mostly inherited (with small alter-
ations) from the classical works [32, 19, 22, 15]. It utilizes a neo-Hookean spring
law for the stretching and compression of the edges:

Fs = ks∆l
λ 1/2 +λ−5/2

λ +λ−3 n (1.8)

Fb = kb
∆ϑ

ϑ0
nb (1.9)

Fa =− kal
∆Si

(Si)1/2 w− kag
∆Sg

S0
g

w (1.10)

Fv =− kv
∆V
V0

Sinb. (1.11)

Here ks is the stretching spring constant, ∆l = l− l0 is the deviation of spring length
from its equilibrium value l0, λ = l/l0, n is the unit vector pointing from one mem-
brane point at another; kb is the bending elasticity constant, ∆ϑ = ϑ −ϑ0 is the
deviation of dihedral angle between two adjacent triangles from ϑ0, nb is the unit
normal vector pointing to the exterior of the cell; kal and kag are the coefficients for
local and global area conservation, ∆Si = Si− S0

i is the change of the ith mesh tri-
angle area, w is a unit vector pointing from the centroid of the triangle at the vertex;
kv is the coefficient of volume conservation, and ∆V = V −V0 is the cell volume
change. The forces Fa and Fv are equally distributed among the vertices of ith tri-
angle with a factor 1/3. The force Fb is applied to the vertex not belonging to the
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common edge of two adjacent triangles, while the opposite force divided by two is
applied to two vertices lying on the common edge.

The equilibrium lengths and angles, l0 and ϑ0, in this formulation are taken from
the template shape of the cell, therefore the modelled RBCs have a ‘memory’ of their
shape. On the one hand, the shape seems realistic, but on the other hand, the bicon-
cave shape of a healthy erythrocyte physically comes from their volume depletion
[49], membrane tension [41], and the physico-chemical properties of the suspending
medium [51] — not from the ‘pre-recorded’ local curvature of the membrane. There
are several published modelling works [41, 53, 13, 63], in which a variety of RBC
shapes (stomatocyte-discocyte-echinocyte sequence) was obtained by minimizing
the total elastic energy of the spring mesh as a result of a spheres volume decrease
with a fixed surface area. The local mesh parameters l0 and ϑ0 are not required to
be prescribed for each triangle in that case to obtain the biconcave shape of normal
RBCs. Studies [41, 28, 29, 36] also show the importance of a spontaneous (yet non-
local) membrane curvature arising from the area difference between the inner and
outer membrane leaflets, which apprears to be an individual characteristic for each
RBC.

Besides that, equation (1.8) allows for infinite stretching of the edges, while the
real spectrin proteins are not infinitely extensible. While for low-to-moderate mech-
anical load this model gives a reasonable approximation of the RBCs dynamics,
for higher forces that are typical for microvasculature and abnormal hemodynamics
(stenosed arteries) it requires modifications.

The alternative version proposed in this paper (further mentioned as the ‘new
model’) consists of the following equations:

Fs =
ks∆l

1−
(

∆l
∆lmax

)2 n (1.12)

Fb = kb(ϑ −ϑ0)nb (1.13)

Fa =− kal
∆Si

(S0
i )

1/2
w− kag

∆Sg

S0
g

w (1.14)

Fv =− kv
∆V
V0

Sinb. (1.15)

Here the Finitely Extensible Nonlinear Elastic (FENE) model is used for the stretch-
ing force in (1.12), and maximal extension of the spectrin fiber was set ∆lmax = l0,
i.e., it can extend to twice its equilibrium length. For RBCs the resting bending angle
ϑ0 = π is used for all triangular elements of the mesh, so the membrane tends to
flatten locally, regardless of the triangle’s position in the shape template. Note that
this parameter controls the spontaneous (global) curvature of the membrane and
may vary for each particular cell [41]. Such formulation is more physical and, as
shown below, gives a better agreement with the experiments. However, for platelets
ϑ0 is determined by the template, like in the old model, given that inactive platelets
are hardly deformable and their discoid shape is maintained by the marginal tu-
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Table 1. RBC material model parameterizations used in the present study. The top part of the table
represents the dimensional values (marked with ‘*’), while the corresponding dimensionless values
are at the bottom.

Parameter M0 M1 M2 M3 M0a Plt

k∗s (10−6N/m) 5 15 10 10 5 104

k∗b (10−12 N) 1 2.5 2 10 1 10
k∗al (10−16 N·m) 0 0 0 0 0.5 10
k∗ag (N) 10−9 10−9 10−9 10−9 10−9 10−9

k∗v (N/m2) 103 103 103 103 103 103

ks 0.005 0.015 0.01 0.01 0.005 10
kb 0.001 0.0025 0.002 0.01 0.001 0.01
kal 0.0 0.0 0.0 0.0 0.05 1.0
kag 1.0 1.0 1.0 1.0 1.0 1.0
kv 1.0 1.0 1.0 1.0 1.0 1.0

bulin band of the cytoskeleton [37], which is implicit in the present coarse-grained
approximation.

For each RBC the lagrangian mesh consists of 601 nodes and 1198 triangles.
For platelets we use 102 nodes and 200 triangles. The parameters used in the present
work are assembled in Table 1. The mass of each particle in the simulations was set
to m = 0.001 in dimensionless units.

The circulating platelets were modelled by hardly-deformable, yet not abso-
lutely solid, oblate spheroids. The adhesive glycoprotein Ib (GPIb) receptors of
platelets were modelled as Lagrangian particles attached to the platelet membrane
particles via harmonic springs, as described in [9]. GPIb receptors can specifically
bind to activated VWF proteins and thus provide shear-induced platelet aggregation
[42].

1.2.2. Non-bonded interactions. In addition to bonded interactions, several non-
bonded conservative forces Fint = −∇U should be introduced. To avoid self-inter-
sections a repulsion was added between the mesh points belonging to the same RBC
in a form of truncated and shifted Lennard–Jones (LJ) interaction:

Fself = −∇U self
LJ (1.16)

U self
LJ (r) = 4εself

[(
σself

r

)12
−
(

σself

r

)6
]
+U self

shift, r 6 rself
cut (1.17)

where σself = rself
cut · 2−1/6 and the truncation takes place at the minimum of the po-

tential energy. For r > rself
cut both potential and force are assumed to be zero. In the

present study rself
cut = 0.5. The potential was also shifted to zero at the point of trun-

cation.
Next, it is necessary to introduce the repulsion between a cell and another cell.

For this purpose, the soft-sphere interaction was used for each pair of particles be-
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longing to the blood cells i and j :

U i, j
rep(r) =

Bi, j

(r+ ri, j
off)

n
, r < ri, j

cut. (1.18)

For RBC-RBC, RBC-platelet and platelet-platelet the following values were used:

BRBC,RBC = 0.001, rRBC,RBC
off = 0.2, rRBC,RBC

cut = 0.8 (1.19)

BRBC,plt = 0.002, rRBC,plt
off = 0.1, rRBC,plt

cut = 0.4 (1.20)

Bplt,plt = 0.0001, rplt,plt
off = 0.1, rplt,plt

cut = 0.4. (1.21)

In a similar way a short-ranged repulsion from the walls was introduced to avoid
penetration:

BRBC,wall = 0.001, rRBC,wall
off = 0.1, rRBC,wall

cut = 0.3 (1.22)

Bplt,wall = 0.0001, rplt,wall
off = 0.2, rplt,wall

cut = 0.3. (1.23)

The choice of these values was phenomenological. The index n = 2 for all presented
simulations.

1.3. Model for VWF multimers

The multimers of von Willebrand factor protein were represented by a ball-and-
spring free-jointed model of a linear polymer. FENE interaction was used to de-
scribe the bonds between VWF monomers:

Fbond
VWF =

KVWF∆r

1−
(

∆r
∆rmax

)2 (1.24)

where ∆r = r− r0 is the bond extension, r is the distance between neighbouring
VWF beads, r0 = 2a is the equilibrium bond length, a = 0.05 µm is the VWF sub-
unit radius. The stiffness of the chain KVWF = 0.06 nN/µm and maximal extension
of a bond ∆lmax = 0.3 µm were obtained by fitting the experimental data from [47].
The number of monomers N in a chain was varied from 10 to 50 with the reference
size of N = 20 corresponding to healthy VWF multimers in blood [56].

The VWF-solvent interactions were accounted as an effective attraction between
VWF beads. Such an approach has proved its validity for the description of shear-
dependent conformational changes of VWF [52, 6, 38, 42, 64]. The Lennard–Jones
interaction (truncated at r = 2.0r0 and shifted) is used here for this purpose:

ULJ
VWF = 4εVWF

[(
σVWF

r

)12
−
(

σVWF

r

)6
]
, r 6 2r0, σVWF = 2−1/6r0. (1.25)

Soft-sphere short range repulsion (1.18) is assigned as a pair interaction between
the VWF beads and the RBC particles with the index n = 2, the amplitude BVWF =
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0.0001, the off-set distance rVWF
off = a and the cutoff radius rVWF

cut = 2a. The same
soft-sphere repulsion was assigned for VWF and the vessel walls.

Finally, the adhesive interactions between VWF and platelet GPIb receptors are
modelled via Morse potential:

UVWF−GPIb(r) = AVWF−GPIb ·
{[

1− e−α(r−a)
]2
−1
}

(1.26)

where amplitude AVWF−GPIb was varied in order to describe the biological variability
and to investigate a possible role of mutations in cell adhesion proteins. The bond
compliance parameter was chosen α = 100µm−1.

1.4. Coupling between the particles and the fluid

The coupling between the particles and fluid was achieved via Ahlrichs and Dun-
weg’s point coupling method with thermal fluctuations [18, 30, 2]. According to
this approach, a viscous-like force Fvisc acting between the LB-fluid and a given ith
Lagrangian particle is introduced as follows:

Fvisc =−ξi [vi−u(r, t)]+Ri(t). (1.27)

The first term is a Stokes-like force proportional to the difference of the particle
velocity vi and the local fluid velocity u. The second term (a Langevin-like random
force R(t)) is used to resolve a thermalized behaviour of the particles, as proposed
in [18] and successfully used in [57]. The opposite force −Fvisc is transferred back
to the fluid.

The parameter of friction ξi should be defined individually for each particle
type in order to reproduce the correct behaviour observed species in experiments. In
present implementation an individual friction coefficient is used for each particle,
providing a possibility for correct and precise tuning of drag forces on platelets,
RBCs and VWF in our coarse-grained simulations. For platelets and VWFs the fric-
tion coefficients ξplt and ξVWF were tuned and validated in previous studies [7, 38].
These coefficients depend on the dynamic viscosity µ of the fluid. For the physiolo-
gical value of blood plasma viscosity (µ ≈ 1.5 mPa·s) the appropriate extimation is
ξplt = 0.23 · 10−9 N·s/m and ξVWF = 1.5/58 · 10−8 ≈ 0.25862 · 10−9 N·s/m. These
values are scaled linearly with µ in present model. Precise tuning of ξVWF is based
on experimental data from [27]. The situation is a bit more complicated for RBCs,
as described further in text.

2. Results
2.1. Tweezing of RBC: validation of new material model

In order to adjust the parameters and validate the biomechanical model of RBCs the
initial set of simulations was devoted to a single erythrocyte in different mechanical
conditions. Firstly, it is necessary to make sure that the elasticity of the model RBCs
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is realistic. The single cell optical tweezers experiments[45] that are nowadays
treated as a ‘gold standard’ in validation of erythrocyte biomechanics were used as
a benchmark. For this case there is no net flow of the fluid, the modelled cell is fixed
in space by a spot on its rim and pulled apart by a constant force applied to another
spot in the opposite side of the rim (equally distributed among the nodes within the
contact area). This imitates the actual experiment when the cell is attached to a pair
of spherical beads via a finite contact area. The elongation of the cell in axial and
transversal directions is measured when the deformation reaches the steady state.
Since the elongation of the cell depends on the contact spot size, the diameter of
the contact area in the model was 2 µm — the same as in [45]. There were sev-
eral parameterizations used for this stage of validation (see Table 1) and the results
for two material models described above were compared with the experiments. The
results presented in Fig. 2 suggest that the new material model better describes the
experimentally measured elasticity of RBCs for intermediate and high forces. The
most appropriate parameterization corresponds to the model M0.

2.2. RBC in shear: high plasma viscosity

After validating the elastic properties of the RBC in the model, the coupling coef-
ficient ξRBC should be appropriately chosen, according to a different kind of exper-
iments. We need to establish to what extent the flow of a viscous fluid can deform
the cell. Several experiments on the dynamics of individual RBCs in a plane shear
flow are known from the literature [25, 62, 20]. It is well known that a transition
occurs from a tumbling/rolling (TR) of a rigid discocyte RBC at low shear rates
to a fluidized tank-treading (TT) motion of RBC membrane at higher shear rates.
This characteristic TT regime was also observed in the simulations (see Fig. 3), thus
indicating qualitative agreement between the model and real cell dynamics.

The paper by Tran-Son-Tay et al. [62] reports longitudinal and transversal sizes
of RBCs performing TT motion under different shear rates. These results are suit-
able for tuning ξRBC in the present model. However, most of the available exper-
iments were conducted in a fluid of non-physiological high viscosity, e.g., 58 cP
in [62]. Thus for the first set of data fitting the viscosity of the fluid in the model
was increased. Figure 4 illustrates the results of both old and new models, and com-
pares the calculations with real RBCs. This study shows that again the new model
gives a better fit of experiments. Appropriate value of the friction parameter ξRBC
should be chosen from a range 0.1–0.2 in dimensionless units, which corresponds
to 10−8–2 ·10−8 N·s/m. The upper value, however, is better in terms of cell deform-
ation.

2.3. RBC in shear: low plasma viscosity

More recent experiments by Yao et al. [67] were performed in a low-viscosity
medium. The authors observed erythrocytes rolling in a shear flow of a buffer
with µ = 0.707 cP and calculated the deformation index by processing the pho-
tographs.Interestingly, they observed that rigid rolling RBCs orient themselves in
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(a) (b)

(c)

(d)

(e)

Figure 2. Deformations of RBCs under uniaxial force-clamp tweezing for old (a) and new (b) mater-
ial models. Blue lines indicate the RBC size along the force (axial direction), and the red ones — in
transversal direction. Different parameterizations correspond to different linestyles. The symbols (blue
squares and red diamonds) indicate the experimental data from [45]. Panels (c-e) visualize the RBC
shapes (old model — left, new — right) under load: (c) 20 pN, (d) 80 pN, (e) 250 pN.

the plane of shear, since tumbling motion of oblate rigid particles is unstable [17].
The results from the simulations are found to be in a reasonable agreement with

these experiments (see Fig. 5), if the friction coefficient ξRBC = 0.7/35.0 · 10−8

N ·s/m = 0.02 ·10−8 N ·s/m. In other words, if one applies the linear scaling ξRBC ∝

µ then the estimation from previous subsection seems correct:

ξRBC =
µ[cP]

35
·10−8N · s/m (2.1)
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(a)

(b)

(c)

(d)

Figure 3. Simulated steady tank-treading (TT) motion of an RBC (new model, M0) in sheared fluid
with µ = 35 cP at different shear rates: (a) 0, (b) 20, (c) 75, (d) 150 s−1. The green marker was used
to track the membrane motion and measure the TT frequency.

where µ[cP] is the dynamic viscosity of the surrounding medium expressed in centi-
poise units (1 cP = 1 mPa · s). However, to achieve a more realistic RBC deformation
at high viscosity, one may consider an alternative fitting formula that gives a non-
linear (quadric) approximation:

ξRBC = (0.000833 ·µ[cP]2 +0.027988 ·µ[cP]) ·10−8N · s/m. (2.2)

For blood plasma at physiological conditions µ ≈ 1.5 cP, therefore, both formu-
las give ξRBC ≈ 0.03 ·10−8 N · s/m, which was used in all further simulations.

A series of simulations of an individual RBC in a plane shear flow has been
performed for different values of ξRBC and different shear rates (see Fig. 6), while
the kinematic viscosity of the fluid ν was kept constant. Indeed, except the tum-
bling/rolling (TR) of non-deformed discocytes and the tank-treading (TT) of fluid-
ized cells, a spectrum of transient modes of deformed (D) erythrocyte movement
was observed in the simulation.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. RBC deformations and dynamics during tank-treading in sheared fluid with µ = 35 cP
for old (a,c,e) and new (b,d,f) material models. (a,b) Projected RBC length vs. shear stress. (c,d)
RBC width vs. shear stress. (e,f) Frequency of the tank-treading. Symbols with lines correspond to
simulations, red circles and green diamonds indicate the experimental data from [62]. In panels (a,c,e):
solid line is for M0, ξRBC = 2 ·10−8 N·s/m; dashed line is for M2, ξRBC = 2 ·10−8 N·s/m; dash-dotted
line is for M0, ξRBC = 1 ·10−8 N·s/m. In panels (b,d,f): solid line is for M0, ξRBC = 2 ·10−8 N·s/m;
dashed line is for M0, ξRBC = 1 ·10−8 N·s/m.

2.4. Shapes of an individual RBC in a shear flow

Recent experiments of Lanotte et al. [40] showed an interesting result: except rolling
or tumbling of discocytes and TT motion, RBCs can attain a variety of deformed
intermediate shapes (stomatocytes, trilobes and multilobes) under low viscosity and
physiologically relevant shear rates. In order to further validate the dynamics of
RBCs in the present model, let us qualitatively compare the RBC shapes in our
simulations and these experiments [40].

In conditions that are close to physiological, namely for µ = 1 cP, a series of
RBC motion regimes is observed in the simulations (see Fig. 7). For low shear the
cell maintains the discocyte shape and performs tumbling (see Fig. 7a), or rolling
(see Fig. 5c). As the shear rate increases, the cell keeps tumbling as a stomatocyte
(see Fig. 7(b,c)). Then the stomatocyte deforms even more, this deformation leads
to several multilibe shapes (see Fig. 7d), that have been observed experimentally
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(a)

(b) (c)

Figure 5. (a) Deformation index of RBC during its rolling in a sheared fluid with µ = 0.7 cP: line
with symbols corresponds to simulations, while squares and diamonds correspond to measurements
from [67]. Simulated RBC in steady (b) and sheared (c) fluid (shear is imposed in the plane of the
picture). The deformation index is calculated as 100% · (a−b)/(a+b), where a and b are lengths of
the major and minor half-axes of the RBC.

Figure 6. Diagram of the RBC motion regimes for different friction coefficients ξRBC (vertical axis)
and various shear rates (horizontal axis). The squares correspond to the tank-treading (TT) motion,
the circles correspond to non-deformed tumbling or rolling, and the triangles correspond to a variety
of deformed shapes.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 7. Different regimes of RBC motion in a shear flow of viscous fluid (µ = 1 cP) at different
shear rates: (a) tumbling discocyte at 100 s−1; (b) tumbling stomatocyte at 150 s−1 ; (c) tumbling
deformed stomatocyte at 250 s−1; (d) multilobe (trilobe) shape at 500 s−1; (e) breathing (vacillating)
tank-treading at 1000 s−1; (f) steady tank treading at 4000 s−1. The cells are clipped at the cross-
section and made transparent for visibility.

in [40]. Further increase of the shear rate forces the RBC to stretch, suppresses the
lobes and protrusions, and leads to a breathing tank-treading (BTT) regime (see
Fig. 7e), which is finally replaced by a steady TT motion at extremely high shear
rates (see Fig. 7f). These results agree with [40, 43].

Next, the outer medium viscosity was varied in the simulations and the afore-
mentioned scaling of outer medium viscosity µ was applied (see Fig. 8). Also in
this figure various experimentally observed shapes are denoted for comparison, ac-
cording to [25, 62, 20, 40, 67]. Finally, the effect of local area conservation on RBC
shapes and dynamical regimes was investigated via simulations (see Fig. 9). In-
crease of the parameter kal expands the detection range of multilobed and deformed
shapes, and moves the onset of TT regime to higher shear rates.

Overall, the simulations are in a reasonable qualitative agreement with the ex-
periments. Several descrepancies exist, however, they can be attributed to the natural
variability of blood cells and the inevitable consequences from coarse-graining of
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Figure 8. State diagram for RBC shapes under shear flow. Each point corresponds to a certain
shear rate (horizontal axis) and a certain value of the dynamic viscosity of the surrounding medium
(blood plasma). Coloured symbols correspond to the simulations, while the experimental observa-
tions from [25, 62, 20, 40, 67] are in the shades of grey. The legend notation is as follows: TT—
tank-treading, BTT—breathing tank-treading, ML—multilobes, TR— tumbling or rolling, R—rolling,
Stom—stomatocyte.

Figure 9. Diagram illustrating the effect of local area conservation parameter kal on motion regime
of RBC under shear (µ = 1 cP). The symbols correspond to different RBC shapes in the simulations:
tank-treading (Sim-TT), breathing tank-treading (Sim-BTT), discocyte (Sim-Disc), multilobe (Sim-
ML), stomatocyte (Sim-Stom). The coloured bars on top indicate the experimentally observed ranges
for discocytes (green), stomatocytes (orange) and multilobes (red) in the whole blood experiments[40].

the model. Based on these results, the model for RBC was found to be validated,
and further simulation of dense suspensions should be trustworthy.

2.5. Simulations of dense RBC-platelet suspension flow in a microtube

For illustration of the applicability of the presented model, let us describe here the
simulation result obtained for pressure-driven flow of a dense suspension of RBCs
and platelets in a microvessel. Simulations performed in an arteriole with a diameter
of 32 µm for a typical Reynolds number Re = 0.05 are presented in Fig. 10. All
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(a)

(b)

(c)

Figure 10. Simulations of RBC-platelet suspension in a microvessel (arteriole with a diameter of
32 µm) at Re = 0.05 (wall shear rate γ̇ ≈ 450 s−1) at different moments of time: (a) 0, (b) 100, (c)
499 ms.
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Figure 11. Flow velocity profile for simulations with Re = 0.05.

(a)

(b)

Figure 12. Simulations of blood flow in the 32 µm-arteriole with different Reynolds numbers after
500 milliseconds: (a) Re = 0.1 (wall shear rate γ̇ ≈ 968 s−1), (b) Re = 0.2 (wall shear rate γ̇ ≈
2064 s−1).
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simulations are performed with the new model (M0a). Blood plasma viscosity was
1.5 cP. Initial placement of the cells was in a form of regular stacks, as presented in
Fig. 10a. The platelets were placed far from the walls. It is instructive to study the
near-wall depleted layer formation and platelet margination dynamics. After 100 ms
the regular pattern was broken and the configuration of cells aquired a tendency to
chaotisation, Fig. 10b. One can see that by the end of the simulation run (499 ms)
(see Fig. 10c), not all platelets are expelled to the periphery of the vessel. The flow
velocity profile was parabolic, as expected (see Fig. 11). The average wall shear rate
calculated from this profile is γ̇ ≈ 450 s−1.

Simulations at higher Reynolds numbers revealed that the formation of the cell-
free layer is promoted by higher shear rates near the vessel walls, as illustrated in
Fig. 12. Here the initial state was identical to Fig. 10a. For Re = 0.1 a cell-free
layer reaches 1–1.5 µm and some amount of platelets are expelled to the periphery,
yet still experience collisions with RBCs and perform irregular tumbling-like mo-
tion (see Fig. 12a). For Re = 0.2 the cell-free layer becomes much more noticeable
(see Fig. 12b), and the marginated platelets have enough space to move without
collisions with RBCs. One can notice that near-wall platelets in simulations tend to
rolling under these hemodynamic conditions.

2.6. Simulations of platelet adhesion to inflamed microvessel walls

Finally, let us inspect the biomechanics of platelet adhesion to von Willebrand factor
by means of computer simulations. In order to achieve the platelet margination in
a shorter simulation time, a smaller blood vessel (12 µm capillary) is considered
in this example. The Reynolds number was set to Re = 0.02 in order to reach the
wall shear rate γ̇ ≈ 2000 s−1 that is typical for arterioles, where platelet hemostasis
is essential. The amount of 100 VWF multimers were attached to the vessel walls
in order to simulate inflammataion and secretion of VWF by the endothelium. In
addition, another set of 100 VWF were freely suspended in the bulk fluid. All VWF
multimers consisted of 20 subunits. The intermonomer attraction parameter was set
to εVWF = 4 kBT , the adhesion energy AVWF−GPIb = 50 kBT .

The results presented in Fig. 13 suggest that the wall-grafted VWFs are elong-
ated and activated by the shear flow, while the free flowing multimers maintain
the collapsed shape. The marginated platelets adhere to the wall-grafted VWFs in a
small amount, not causing the thrombotic conditions during the simulated timespan.
In future it would be instructive to perform series of simulations for various para-
meters of platelet-VWF interaction.

3. Discussion and conclusion
In this paper a three-dimensional hemodynamic model for cell-resolving simula-
tions was presented. Much attention in this work is paid to the development of a
more accurate biomechanical model of the erythrocyte for use in models of cellular
hemostasis. A modification of the known models was proposed to accurately take
into account the elastic properties of the erythrocytes. The new model showed bet-
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(a)

(b)

(c)

Figure 13. Simulation of whole blood flow in an inflamed microvessel (12 µm in diameter) with 100
VWF multimers (20 subunits each) exposed by the endothelium (attached to the walls) in presence
of the free flowing VWFs in plasma at different time moments: (a) t = 0, (b) t = 50, (c) t = 130 ms.
The purple beads indicate the overstretched (>20 pN) and thus activated VWF monomers that are
capable of stronger platelet adhesion [27, 9]. The Reynolds number Re = 0.02, the wall shear rate
γ̇ ≈ 2000 s−1.
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ter agreement with the experimental results. The parameters were selected from a
comparison of the dynamics of the model system with different experiments from
the literature. The proposed model is not the only possible one. Several alternative
variants and implementations are well known [68, 43, 22, 16]. For instance, in [35]
the non-uniform force distribution for the local area conservation is proposed, which
is useful for simulations of cells in cramped conditions.

Another issue raised in the present paper concerns the exact selection of viscous
friction coefficients for each of the system objects. This paper shows that, using
independent experiments published in the literature to date, it seems possible to
tune the system accurately enough to reproduce the hemodynamic effects, at least
phenomenologically.

The model is capable of efficient simulations of the whole blood flow in real-
istic hydrodynamic conditions, high hematocrit, and arteriole- or venule-sized blood
vessels. The simulations qualitatively reproduce the Fahraeus–Lindquist effect and
consequent platelet margination. VWF-dependent platelet aggregation can also be
simulated using this framework. Further studies may be devoted to the investiga-
tion of the RBC aggregation effects in microvasculature. Another possible way for
modification is more accurate accounting of the mechanical properties of the spec-
trin network and cell membrane via molecular modelling.

Currently, increasing attention is paid to explicit modelling of platelet adhesion
to von Willebrand factor multimers, as it may shed light on various hemostatic dis-
orders and pathological conditions. Since the first publications on shear-induced
conformation changes of VWF [52, 4] this topic has attracted researchers from dif-
ferent non-medical areas, including polymer physics, computational physics and
hydrodynamics. Several works (see, e.g., [50, 34, 33]) addressed the primary hemo-
stasis via classical dissipative particle dynamics modelling, and described margina-
tion, stretching and size regulation of VWFs. In [7, 6, 38] an alternative numerical
approach, a combination of PD and LBM, was tested and used to quantify the effect
of VWF size on initial platelet hemostasis. The possibility of platelet mechanical
activation during adhesion to surface-immobilized VWF was also investigated in
[9]. Recent experiments [11] and improved higher-resolution models [39, 8] should
help to obtain a more accurate biophysical picture of VWF mechanochemistry that
could be used in hemodynamic simulations and biomedical applications. Another
remarkable recent study [42] reproduced the shear-induced platelet aggregation at
high shear rates in silico by simulating soluble VWF and nonactivated platelets
(adopting a spherical shape) in blood plasma without RBCs via a similar LBM-
Langevin dynamics approach. The effect of platelet shape and size, as well as their
cytoskeleton restructuring under shear might be an intriguing direction to study in
future using numerical simulations.

Acknowledgement: The research was carried out using the equipment (supercom-
puter Lomonosov-2) of the shared research facilities of HPC computing resources
at Lomonosov Moscow State University [66].
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