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One-dimensional haemodynamic model of a vascular
network with fractional-order viscoelasticity

R. Yanbarisova bc and T. Gamilova c de

Abstract — We propose a computational framework for a one-dimensional haemodynamic model
with the arterial walls described by the fractional-order viscoelastic material constitutive law. This
framework is used to compare blood flow characteristics for simulations with elastic and fractional-
order viscoelastic walls. We use three well-established benchmark tests: a single pulse wave in a
long vessel, flow in a 37-segment network of elastic tubes, and flow in anatomically detailed arterial
network consisting of 61 arterial segments. All results for elastic model are in a good agreement
with analytical solutions, in vitro data and other well-established approaches. Fractional-order model
demonstrates noticeable differences in pulse wave propagation speed and minor differences in pressure
and flow profiles. Differences in profiles are negligible in major vessels, but more profound in vessels
beyond the third or fourth generation.
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wall
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Blood flow simulations provide flow patterns and various flow features (pressure,
velocity, wall shear stress, etc.) in human vasculature. The values of blood flow
and pressure are important for understanding of the progression of vascular dis-
eases. An arterial wall, its properties and behaviour are a major part of blood flow
simulations. The arterial wall is a complex heterogeneous structure with various
biomechanical properties. Accurate simulation of arterial wall is a challenging task,
so the majority of blood flow models utilize numerous simplifications. Solid ar-
terial wall is usually used in three-dimensional simulations [21], which provides
satisfactory accuracy for a number of applications. Fluid-structure interactions with
various vessel wall models are also used to increase the accuracy when needed [11].
One-dimensional haemodynamic simulations often use constitutional laws, which
describe vessel walls by elastic or integer-order viscoelastic models [8, 25]. Elastic
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vessel walls can be treated as an ideal spring: there is a one-to-one correspondence
between blood pressure and vessel cross-sectional area [25, 26]. In models with
integer-order viscoelastic walls blood pressure depends on the cross-sectional area
and its time derivative [8]. Such viscous properties of a vessel wall material as the
energy dissipation is taken into account. Further development involves transition
to the fractional-order viscoelastic models, where blood pressure depends on the
fractional-order time derivative of the cross-sectional area.

In recent years there has been a growing interest in fractional-order derivatives
for blood flow models [6, 12, 23, 29]. Fractional derivatives involve integration over
the full trajectory of a particle or a system. As a result, the current state of a system
depends on its history represented by its previous states. Such features of fractional-
order derivative models as non-locality and memory, which are often described by
the single fractional order parameter, enable the complex pressure-flow relations
over various time and space scales without the addition of smaller sub-models. For
example, introduction of fractional derivatives into the Windkessel model (elastic
reservoir model) with the single additional parameter, fractional differentiation or-
der, is sufficient to provide more realistic aortic blood pressure profiles without the
need to introduce the representation of systemic circle or additional sub-models of
microcirculation [6, 12]. Fractional-order models have also been used to simulate
blood flow interactions with a magnetic field [4], viscoelastic vessel walls [10, 23],
hypertensive blood pressure profiles [6].

In the present work, we construct a one-dimensional haemodynamic model with
the arterial wall described by the fractional-order viscoelastic material. We use
mathematical model of one-dimensional blood flow with numerical implementa-
tion proposed in [13, 25], and validate resulting computational framework with the
help of benchmark tests [8]. Then we modify the presented approach by introducing
mathematical formulation of fractional-order vessel wall proposed in [23]. Our goal
is to compare flow and pressure profiles for different variants of the model, includ-
ing the elastic one. Our previous results [12] show that fractional derivatives can be
used in boundary conditions to adjust aortic pressure profile and improve person-
alization of the model. Here, we investigate the impact of fractional derivatives in
vessel wall constitutive law for major vessels and for smaller arteries.

1. Haemodynamic model of a vascular network with fractional-order
viscoelasticity

1.1. Governing equation for the haemodynamic model with elastic vessels

We consider the following one-dimensional haemodynamic model for blood flow
in vessels [13, 25]. This model is based on the flow of the incompressible viscous
fluid through a network of one-dimensional tubes. Laws of mass and momentum
conservation within the network are expressed as a system of hyperbolic equations
for each tube (detailed derivation can be found in [24]):

∂A
∂ t

+
∂Au
∂x

= 0 (1.1)
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Here t is time, x is the coordinate along the vessel, A = A(x, t) is the cross-sectional
area, u = u(x, t) is the velocity averaged over the cross section, ξ is the shape profile
constant (ξ = 2 for the parabolic profile), P = P(x, t) is the blood pressure, ρ and µ

are blood density and viscosity, respectively.
In order to solve the system (1.1), (1.2) it is necessary to provide a pressure-area

relation. In the case when the wall behaviour is described by the linear isotropic
and incompressible elastic material, the pressure-area relation is governed by the
Laplace’s law and takes the following form [2, 24]:

p = β

(√
A−

√
A0

)
(1.3)

where β = 4
3
√

πEh/A0. Here E is the Young modulus, h is the wall thickness, r0

is the lumen radius corresponding to the reference cross-sectional area A0 = πr2
0 at

equilibrium state (A,U, p) = (A0,0, pext).
On the inlet vessels such as ascending aorta we specify flux, which is given

either by an analytical expression or by tabulated data corresponding to the flux in
real patients.

On the outlet of terminal vessels we simulate microcirculation vessels with the
three-element Windkessel model by coupling our 1-D model with 0-D Windkessel
model:

Q
(
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R2

)
+CR1

∂Q
∂ t

=
P−Pout

R2
+C

∂P
∂ t

. (1.4)

Three-element Windkessel model consists of a resistance R1 connected in series
with a parallel combination of a second resistance R2 and a compliance C, R2 is the
resistance of the entire systemic vascular bed, which is also called the total peri-
pheral resistance, C is the total arterial compliance, which describes the distensibil-
ity of the peripheral arteries and veins. The resistance R1 is equal to the characteristic
impedance of the end point in the arterial network to minimize wave reflections [3].

One-dimensional vessels are connected to each other in junction points to create
an arterial structure. The conditions of mass conservation and the total pressure
continuity are imposed at the junction points:

∑
k

Qk = 0 (1.5)

ρu2
i

2
+Pi =

ρu2
j

2
+Pj, i 6= j. (1.6)

Here k denotes indices of all incident vessels, while i and j are the indices of any
two incident vessels.
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Figure 1. Schematic representation of the SLS model (left) and the FO-SLS model (right). Dashpot
component in the SLS model is replaced with the spring-pot in FO-SLS.

1.2. Pressure-area relation for the fractional-order viscoelasticity wall model

We follow [23, 29] to derive the relation between pressure and cross-sectional area
of the vessel with viscoelastic walls.

We assume that the behaviour of the wall material is described by fractional-
order standard linear solid (FO-SLS) model. This model is the fractional-order gen-
eralization of the standard linear solid (SLS) model, which is constructed using the
parallel combination of a spring with a spring in series with a fractional-order dash-
pot, spring-pot (see Fig. 1):

σ(t)+
η

E2
Dα

σ(t) = E1

(
ε(t)+η

E1E2

E1 +E2
Dα

ε(t)
)
. (1.7)

Here

Dαu(t) =
1

Γ(1−α)

t∫
0

∂u
∂ t (θ)

(t−θ)α
dθ

is the Caputo fractional derivative with 0<α 6 1, σ(t) is the circumferential tensile
stress, ε(t) is the circumferential strain, E1, E2 and η are the elastic moduli and
viscosity of the spring-pot for the SLS model, respectively. In the case of E2 = 0
and η = 0 model reduces to the linear elasticity model with Young modulus equal
to E1.

Before we can derive pressure-area relation, we need to derive the relation
between circumferential tensile stress σ(t) and strain ε(t) from (1.7). We apply
the Laplace transform L to both sides of equation:(

1+
η

E2
sα

)
L (σ)(s) = E1

(
1+η

E1E2

E1 +E2
sα

)
L (ε)(s). (1.8)

We introduce relaxation time constant τ = η/E2. Then

L (σ)(s) =
(
(E1 +E2)−

E2

τ

1
τ−1 + sα

)
L (ε)(s). (1.9)
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Performing inverse Laplace transform gives expression for the stress:

σ(t) =
(
(E1 +E2)−

E2

τ
Eα,α

(
− tα

τ

))
ε(t). (1.10)

Here

Eα,β (z) =
∞

∑
k=0

zk

Γ(αk+β )

is the two-parametric Mittag-Leffler function [14] with β = α .
Circumferential tensile stress σ(t) is related to the pressure p(t) inside vessel

through the Laplace law [1]:

σ(t) =
R0(p(t)− p0)

h
. (1.11)

Here R0 and p0 are arterial radius and pressure at the reference state (A, p,U) =
(A0, p0,U0).

The corresponding circumferential strain is [5]:

ε(t) =
4
3

R−R0

R0
. (1.12)

Substituting (1.11) and (1.12) into (1.10), we obtain the following pressure-area
relation for the wall governed by the FO-SLS model [29]:

p(t) =
(

1+
E2

E1

)
pE(t)− 1

τ

E2

E1

t∫
0

I(t−θ)pE(θ)dθ (1.13)
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4
√

πE1h
3A0

(√
A(t)−

√
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)
(1.14)

I(t) = tαEα,α

(
− tα

τ

)
. (1.15)

The model described above was proposed in [10] and fitted to data obtained
from the uniaxial stress-relaxation tests on the tissue of ascending aorta. Eight sets
of parameters E1, E2, η , and α are presented in Tab. 1. Each set corresponds to a dif-
ferent specimen of aortic tissue of four patients [10]. It was found that large systemic
arteries are described by low values of fractional order α ∈ [0.1,0.4]. This leads to
prevalent elastic behaviour of such vessels, which, in turn, provides similar descrip-
tion of flow through these vessels as conventionally used elastic constitutional tube
law.

We perform several numerical experiments with different FO-SLS model para-
meters obtained in [10] and presented in Tab. 1. One of the goals of this work is to
compare pressure and flow profiles between linear elastic and FO-SLS wall models.
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Table 1. Parameters for the FO-SLS
model used in numerical experiments
(presented in [10]).

Name E1 E2 η α

FSLS1 0.68 0.39 2.14 0.23
FSLS2 0.64 0.49 1.80 0.18
FSLS3 0.56 0.48 5.54 0.11
FSLS4 0.61 0.48 1.54 0.16
FSLS5 0.67 0.38 1.88 0.22
FSLS6 0.62 0.51 1.95 0.36
FSLS7 0.80 0.19 3.76 0.10
FSLS8 0.69 0.33 2.77 0.23

In order to compare the results in arteries other than aorta we assume that Young
modulus E is given for each vessel for linear elastic wall model. For FO-SLS model
of the same artery we assume that E1 = E and scale E2 to obtain the same ratio
E2/E1 as given in Tab. 1. It was assumed for simplicity that each vessel is described
by the same parameters of fractional viscoelasticity η , α , E1, E2. However, it is
well known, that different vessels can possess different elastic and viscoelastic be-
haviour depending on the location and geometric characteristics such as its diameter
and length. There is a lacking amount of data and experiments, which extract FO-
SLS parameters for different vessels, which forces us to use parameters obtained for
aorta.

1.3. Numerical discretization

We solve the hyperbolic system (1.1), (1.2) inside each vessel numerically with the
help of an explicit characteristic method [20], which is monotone and first-order
accurate. Compatibility conditions imposed on junctions (1.5), (1.6) and boundary
conditions imposed on outlets (1.4) form the system of nonlinear equations, which is
solved using the Newton method. Compatibility conditions are discretized implicitly
with the first-order approximation in time variable. A detailed description of the
numerical discretization can be found in [27].

In order to discretize convolution integral in (1.13), we follow [16]. Consider
the convolution integral

b∫
a

f (t−θ)g(θ)dθ (1.16)

with the restriction that a few values of numerical approximation of function g are
available (in our case g provides pressure values at the current and previous time
steps), and that inverse Laplace transform of f is known a priori.

The algorithm is based on approximating convolution integral effectively via a
quadrature rule for contour integration in the complex plane, which appears as the
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result of applying inverse Laplace transform to the convolution kernel function [19]:

f (t) =
1

2πi

∫
Γ`

F(s)ets ds≈
N

∑
j=−N

ω
(`)
j F(s(`)j )ets(`)j , t ∈ I`. (1.17)

Here B > 1 is the base number, ` is the contour index number, Γ` is the contour
in the complex plane chosen to provide an approximation over the time interval
I` = [B`−1∆t,(2B`−1)∆t]. In order to approximate the integral in (1.13) for t ∈ [0,T ]
with time step ∆t it is sufficient to use L = d logB(T/∆t + 1)/2e contours, which
increases logarithmically with T . Substitution of (1.17) in (1.16) results in:

b∫
a

f (t−θ)g(θ)dθ =

b∫
a

(
1

2πi

∫
Γ

F(s)e(t−θ)s ds
)

g(θ)dθ

=
1

2πi

∫
Γ

F(s)e(t−b)λ
( b∫

a

e(b−θ)sg(θ)dθ

)
ds.

The inner integral is recognized as the solution y(b,a,s) of the scalar linear initial
value problem

y
′
= sy+g, y(a) = 0.

If [t − b, t − a] ⊂ I`, then the contour integral over Γ = Γ` is replaced with the
trapezoidal quadrature rule (1.17), which leads to

b∫
a

f (t−θ)g(θ)dθ ≈
N

∑
j=−N

ω jF(z j)e(t−b)s j y(b,a,s j). (1.18)

In our case f (t) is given by (1.15) with inverse Laplace transform F(s)=1/(sα+τ−α).
We choose 2N + 1 quadrature points independently of `, then fix B = 5 and

N = 20 hereafter, and choose a hyperbola contour

z(θ) =
N
T`

µ (1− sin(iβθ +α))

with the choice of parameters, which are optimal for the chosen B and given interval
[t0,Λt0] (here t0 =B`−1∆t, Λ= 2B−1/B`−1), which follows the procedure described
in [28]. It is proved that the algorithm computes a convolution integral with the
spectral accuracy with respect to the number of points in quadrature rule [18].

During numerical modelling with N time steps it is necessary to evaluate N
convolution integrals for each degree of freedom of the vessel. A sequence of fast
growing time intervals I` covering [∆t,T ] leads to logarithmic amount of contours
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used in approximation. This leads to an effective algorithm with O(N logN) op-
erations, O(logN) Laplace transform evaluations and O(logN) memory for each
vessel node, which is more efficient than O(N2) operations, O(N) evaluations of
Laplace transform and O(N) memory in the case of direct computations.

The solution procedure at each time step consists of two stages. On the first
stage, equation (1.13) is computed using the numerical discretization for the con-
volution integral described above. On the second stage, a finite difference scheme
for equations (1.1), (1.2) is used with the pressure data updated on the first stage
to compute the solution on the next time step. Notice that the convolution integral
uses pressure data at previous time steps with the weights determined by the kernel
function I(t), which decreases, therefore accounting of the memory effects inherent
to the models described by the fractional-order derivatives.

2. Numerical experiments
In this work we perform numerical simulations for two distinct setups. The first
one is the one-dimensional haemodynamic model with a vessel wall described by
the linearized elasticity model (1.3). We refer to it as ‘elastic model’. It can be
obtained by assuming E2 = 0 in (1.13). The second one is the one-dimensional
haemodynamic model with the pressure-area relation for the vessel wall governed
by the FO-SLS model (1.13). We refer to it as ‘FO-SLS model’ for brevity. In this
setup we use parameter sets of the FO-SLS model E1,E2,η ,α presented in Tab. 1.

We perform numerical simulations of the following three benchmark tests:

1. Single pulse propagation in a straight reflection-free vessel [8]. This bench-
mark test simulates the propagation of a narrow Gaussian-shaped wave in
an isolated vessel with uniform parameters. An analytical solution exists in
the case of the linearized elasticity model. In this test we compare results of
elastic model with the analytical solution.

2. Flow in a network of elastic tubes that includes 37 segments [22]. This net-
work is an experimental 1:1 replica of the 37 largest conduit arteries in the
human systemic circulation. Pressure and flow were measured in vitro in mul-
tiple locations. We compare calculated pressure and flow profiles for elastic
model with measured in vitro data from [2, 8].

3. Flow in an anatomically detailed arterial network (ADAN56) [7]. This net-
work consists of 56 vessels that represent largest human arteries. We compare
calculated pressure and flow profiles for elastic model with profiles obtained
with other well-established approaches [8].

In all three benchmarks we first validate our elastic model governed by equa-
tion (1.3) (or equation (1.13) with E2 = 0) by comparing obtained results with the
reference results from [8]. After that we investigate the behaviour of FO-SLS model
governed by equation (1.13) and compare differences in pressure and flow profiles
between FO-SLS and elastic models.
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Figure 2. Single pulse wave test. Calculated pressure pulses at different times (coloured lines) and
reference analytical solution for the peak pressure height (black line).

Parameter Value

Length, L 10 m
Cross-sectional area, A0 π cm2

Initial cross-sectional area, A(x,0) A0
Initial flow velocity, U(x,0) 0
Initial pressure, P(x,0) 0
Wall thickness, h 1.5 mm
Blood mass density, ρ 1050 kg m−3

Blood viscosity, µ 4 mPa s
Velocity profile order, ξ 9
Young modulus, E 400 kPa
Diastolic pressure, Pdia 0
External pressure, Pext 0
Outflow pressure, Pout 0

Table 2. Parameters for single vessel
benchmark.

The model described above was implemented using C++ with OpenMP paral-
lelization.

2.1. Validation of the model with elastic tube law

At first, we consider a single pulse propagation in a vessel with provided analytical
input flow, which is given by the Gaussian function

Qin(t) = 10−6 exp
(
−104(t−0.05)2)

)
m3/s.

At the outflow the pressure is set: P = Pout. The vessel is long enough to avoid
any reflections from the outflow (right) boundary for the duration of the calculations.
The parameters of the benchmark can be found in Tab. 2.
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Table 3. Parameters for 37-artery benchmark.
Parameter Value

Blood mass density, ρ 1050 kg m−3

Blood viscosity, µ 2.5 mPa s
Velocity profile order, ξ 9
Young modulus, E 1.2 MPa
Diastolic pressure, Pdia 0
External pressure, Pext 0
Outflow pressure, Pout 432.6 Pa

Table 4. Parameters for ADAN56 benchmark.
Parameter Value

Blood mass density, ρ 1040 kg m−3

Blood viscosity, µ 4.0 mPa s
Velocity profile order, ξ 2
Young modulus, E 225 kPa
Diastolic pressure, Pdia 10 kPa
External pressure, Pext 0
Outflow pressure, Pout 0

For the presented setup the peak pressure is set from the analytical solution:

Ppeak(x) = Ppeak,0 exp
(
−(ξ +2)πµx

ρc0A0

)
. (2.1)

Here c0 = 6.17m/s is the pulse wave propagation speed in the case of the elastic
model and Ppeak,0 is the peak pressure computed for the inviscid case µ = 0.

We set time step τ = 10−5 s and spatial step h = L/104 = 10−2 cm and consider
viscous flow with viscosity µ = 4mPa s.

Peak pressure profiles obtained during the numerical solution are presented in
Fig. 2 along with the analytical profile. It can be observed that numerical peak pres-
sures are in a good agreement with the analytical solution. At any point of time
calculated height of the peak (coloured lines in Fig. 2) is very close to the theoret-
ical value (black curve in Fig. 2).

The second benchmark test is a network consisting of 37 silicone vessels presen-
ted in [22]. At the inlet of the ascending aorta the periodic flow rate measured in
vitro is prescribed as the inflow boundary condition Qin(t). Terminal vessels are
connected to the outflow pressure through a hydraulic resistance. The 1-D govern-
ing equations are solved using the tube law with fully elastic properties with Ad =A0
and Pd = 0, and the initial conditions are (A(x,0),U(x,0),P(x,0)) = (A0,0,0) for
all segments.

General model parameters for this benchmark are presented in Tab. 3. Details
can be found in supplementary materials of [8]. Pressure and flux profiles in several
arteries of 37-artery network are presented in Fig. 3. One can see that numerical res-
ults are in a good agreement with in vitro measurements. There are some differences
in smaller vessels (middle and bottom in Fig. 3), but they do not exceed 5% relat-
ive error, which is the same deviation reported by authors of other methodologies
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Figure 3. Flow in a 37-artery network. Pressure (left) and flow (right) waveforms in the midpoint of
one aortic segments: thoracic aorta II (top), and two vessels from the third generation of bifurcations:
right ulnar (middle), splenic (bottom). Pref and Qref correspond to the in vitro data from [8], Pnum and
Qnum correspond to numerical data obtained with elastic model in this work.

[8, 22]. We conclude that the computational framework presented in this work does
allow us to calculate blood and pressure profiles in the network of elastic tubes.

The third benchmark utilizes a reduced version of the anatomically-detailed ar-
terial network (ADAN56) model developed in [7]. The model contains the largest
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Figure 4. ADAN56 benchmark test. Pressure (left) and flow (right) waveforms in the midpoint of two
aortic segments: aortic arch I (top), thoracic aorta III (bottom). Pref and Qref correspond to the numer-
ical data in [8] (finite-volume method), Pnum and Qnum correspond to the numerical data obtained in
this work (grid-characteristic method).

56 vessels of the human arterial system represented by 61 arterial segments. The in-
flow boundary condition Qin(t) is given by the periodic inflow function presented in
supplementary materials of [8]. Vessel walls are assumed to have the same Young
modulus throughout the whole arterial network, Ad = A0, Pd = P0 = 10kPa. Wall
thickness is given using empirical relation

h = R0 [aexp(bR0)+ cexp(dR0)]

where R0 is the reference radius (related to A0), a = 0.2802, b = −5.053cm−1,
c = 0.1324 and d = −0.1114cm−1. The initial conditions are (A(x,0),U(x,0),
P(x,0)) = (A0(x),0,P0) for all segments. General model parameters for ADAN56
benchmark are presented in Tab. 4.

Pressure and flow profiles in aortic segments (aortic arch and thoracic aorta) of
ADAN56 network are presented in Fig. 4. The aortic arch is the closest segment to
the inlet of the whole network. The thoracic aorta is approximately 15 cm down-
stream. We compare our results with profiles obtained using finite-volume method
(FVM) from [8]. One can observe that the difference between two approaches is
small and does not exceed 1% of systolic pressure (or maximum flow). Figure 5
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Figure 5. ADAN56 benchmark test. Pressure (left) and flow (right) waveforms in the midpoint of
three vessels from the third and fourth generation of bifurcations: right posterior interosseous (top),
right femoral (middle) and right anterior tibial (bottom). Pref and Qref correspond to the numerical data
in [8] (finite-volume method), Pnum and Qnum correspond to the numerical data obtained in this work
(grid-characteristic method).

presents profiles for peripheral arteries of ADAN56: right posterior interosseous,
right femoral and right anterior tibial. Both approaches provide similar results on
peripheral arteries as well.
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Figure 6. Single pulse wave test. Peak pressure profiles in elastic (blurred lines) and viscoelastic
(bright lines) vessel at different times. Same colours correspond to the same time moments.

As we can see from the plots (see Figs. 2–5), the presented computational frame-
work is successfully validated against the analytical solution (first benchmark), in
vitro measurements (second benchmark) and other well-established computational
approaches (third benchmark). In previous validations we only used the elastic
model of the vessel wall. In further numerical simulations we use the presented
framework to compare the elastic and FO-SLS models.

2.2. Numerical experiments for FO-SLS model of vessel wall

We perform several numerical experiments with different FO-SLS model paramet-
ers presented in Tab. 1. In order to compare the results with elastic wall model (1.3)
we set E1 = E, where E is a Young modulus of elastic wall, and scale E2 to obtain
the same ratio E2/E1 as given in Tab. 1. The remaining parameters (τ = η/E2, α)
are set as given in Tab. 1. In all benchmark tests we use the same space and time
steps as in the experiments with the elastic model governed by (1.3).

In the first benchmark, we perform a single pulse wave numerical experiment
with viscoelastic vessel given by parameters FSLS1 from Tab. 1 and compare res-
ulting pressure profiles for elastic and viscoelastic cases.

It can be seen from Fig. 6 that the pressure profile in the viscoelastic vessel
dampens stronger than in elastic case, while moving with the increased speed. For
example, when elastic model pulse wave passes 5 m (light-blue) FO-SLS pulse wave
is already beyond 6 m mark. The latter means that the pulse wave propagation speed
in viscoelastic vessel can be altered in comparison with the elastic case, which might
lead to noticeable differences in the network flow simulation results.

It should be noted, however, that in this synthetic benchmark pulse wave moves
along the long vessel without any reflections, whereas in real simulations vessels
are much shorter, which might alter the behaviour of the pulse wave in the case of
short arteries in network simulations.
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Figure 7. Flow in a 37-artery network. Pressure (left) and flow (right) waveforms in the midpoint of
one aortic segments: thoracic aorta II (top), and two vessels from the third generation of bifurcations:
right ulnar (middle), splenic (bottom). Pelastic and Qelastic correspond to numerical data for simulation
with elastic vessel walls, PFSLS and QFSLS (coloured lines) correspond to numerical data for simula-
tions with viscoelastic vessel walls and parameters presented in Tab. 1.

The second benchmark test involves numerical experiments in a 37-segment
network with measured in vitro pressure and flow profiles. We perform simulations
for eight variants of the FO-SLS model (Tab. 1). Depending on the FO-SLS para-
meters, a periodic solution can be achieved after different amount of cardiac cycles,
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Figure 8. ADAN56 model. Pressure (left) and flow (right) waveforms in the midpoint of three aortic
segments: aortic arch I (top), thoracic aorta III (middle) and abdominal aorta V (bottom). Pelastic and
Qelastic correspond to numerical data for simulation with elastic vessel walls, PFSLS and QFSLS cor-
respond to numerical data for simulation with viscoelastic vessel walls and parameters presented in
Tab. 1.

so we take the one once periodic solution is established. As can be seen from the
results presented in Fig. 7, the pressure and flow profiles in arteries located near
the aortic input do not significantly differ in shape. There are distinctions between
different parameter sets of the FO-SLS model, but maximum and mean pressure
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and flow values are similar. The pressure profiles in right ulnar and splenic arteries
are also very close. The flow profiles do demonstrate differences: numerous peaks
are not synchronized and have various amplitudes. However, average and maximum
values throughout the cycle are within 5% margin. The FSLS6 model (light-green
line in Fig. 7) appears to demonstrate the most significant deviations from the elastic
model (black line in Fig. 7). It may be due to the fact that the FSLS6 model has the
highest fractional order α = 0.36 (Tab. 1).

Then we perform numerical experiments for the ADAN56 arterial network
(third benchmark) with the vessel walls described by the FO-SLS viscoelastic
model (1.13). The pressure and flow profiles for three aortic segments are presented
in Fig. 8. Figure 9 presents the profiles for peripheral arteries: right posterior inter-
osseous, right femoral and right anterior tibial. Similar to the second benchmark,
the pressure and flow profiles of the FO-SLS model are very similar to those of the
elastic model in the aortic segments. The largest differences are the lowest values
of the blood flow (bottom-right and middle-right plots in Fig. 8). The retrograde
(backwards) flow increases with the increase of the fractional differentiation order.
The ratio between retrograde flow and antegrade flow (RA ratio) is an important
diagnostic parameter [17]. Clinical studies show that RA ratio is lower than 10%
in the ascending aorta (aortic arch), but increases up to 30% in the thoracic aorta
in the healthy case [9, 15, 17]. Our calculations show that for the elastic model RA
ratio is 4% in both ascending and thoracic aorta (top-right and middle-right plots in
Fig. 8). For FO-SLS model RA ratio is also 4% in ascending aorta, but increases
to 10% in thoracic aorta. The absolute value of RA ratio for both elastic and FO-
SLS models can easily be adjusted by changing boundary condition at the inlet
of the aorta. However, the increase in RA ratio from ascending to thoracic aorta
shows that FO-SLS model might be better suited for retrograde flow simulations.
Retrograde blood flow during diastole contributes to the coronary and cerebral cir-
culations, so FO-SLS model can be important in applications involving coronary or
cerebral haemodynamics.

Pressure and flow profiles for peripheral arteries (Fig. 9) demonstrate similar
shapes for elastic and FO-SLS models. The following differences can be observed.
The first one is the pulse wave propagation speed, which is higher in the case of
FO-SLS model. Compared to the aorta, the retrograde flow is not as significant in
peripheral arteries. On the contrary, the maximum values of pressure and flow for
FO-SLS model can be 10-12% higher than those for the elastic model (black line
in Fig. 9). This distinction is important for applications since these are typically
the values that can be measured with cuffs or ultrasound. Parameter identification
techniques developed for models with elastic vessel walls should be adjusted in case
of FO-SLS vessel walls.

The closest FO-SLS model to the elastic model is FSLS7 (orange line in Figs. 8
and 9). This model has the lowest fractional order α = 0.1 (Tab. 1). It seems that
fractional order is the most important parameter that results in qualitative change in
pressure and flow profiles.
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Figure 9. ADAN56 model. Pressure (left) and flow (right) waveforms in the midpoint of three vessels
from the third and fourth generation of bifurcations: right posterior interosseous (top), right femoral
(middle) and right anterior tibial (bottom). Pelastic and Qelastic correspond to numerical data for sim-
ulation with elastic vessel walls, PFSLS and QFSLS correspond to numerical data for simulation with
viscoelastic vessel walls and parameters presented in Tab. 1.

In general, numerical flow characteristics in arteries located distantly from the
aortic arch can differ significantly in FO-SLS and elastic model simulations. For
such arteries FO-SLS model can be considered to be used in simulations, whereas
its usage in large arteries located near aortic arch does not justify itself. The only
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significant difference in the aortic flow profiles between FO-SLS and elastic model
is the retrograde flow, which is more pronounced in FO-SLS model.

3. Conclusions

The prresented one-dimensional model with the elastic and fractional-order vis-
coelastic tube laws was tested with the help of three well-established benchmark
cases. We have demonstrated that pressure and flow profiles in the case of elastic
vessel walls correspond to the analytical solution, in vitro measurements and results
of other well-established approaches.

Numerical simulations for FO-SLS model have demonstrated several distinc-
tions from the elastic model. The first one is the differences in pulse wave propaga-
tion speed, which is higher for FO-SLS model. This can be seen from the results
of the single pulse propagation test as well as ADAN56 test. The second one is
the differences in calculated values of maximum and minimum pressures and flow
between elastic and FO-SLS models, which vary depending on the parameters of the
latter model and increase with distance from the heart. For arteries up to the fourth
generation, these distinctions are not significant, whereas the differences in pres-
sure and flow profiles between elastic and FO-SLS models are substantial in vessels
beyond fourth generation. We conclude that it does not worth to use FO-SLS vessel
wall model in major arteries, since this model demand substantional computational
resources without significant differences in output flow characteristics. However, a
fractional-order model could be used to simulate blood flow in the smaller arter-
ies, for example, in the circle of Willis, coronary arteries, and other applications
involving arteries with diameters around 1–2 mm.

Most of the quantitative differences between the FO-SLS model and the elastic
model can be attributed to proper parameter identification and boundary condi-
tions. Benchmark tests were developed for elastic vessel wall models that work well
within small deviations of vessel diameter. Testing non-linear effects of FO-SLS
models may require other specialized benchmarks. We observe one qualitative dis-
tinction between the FO-SLS model and the elastic model: evolution of retrograde
flow along the aorta. Backward flow is more pronounced for the FO-SLS models in
thoracic aorta, which corresponds to clinical studies.

It should be noted that fractional-order parameters are difficult to estimate from
patient data, which raises the question of the applicability of the model and pro-
spects for its usage. Clinical applications would require a robust parameter identi-
fication algorithm for smaller arteries, which leads to expensive invasive tests and
experiments with vessel tissue, which are also too complicated to use in everyday
practice.

Future work may involve tests in smaller vessels, e.g., calculating pressure drops
across stenosis in coronary arteries. Another possible study may involve invest-
igation of vessel adaptation to changes blood flow or pressure. Identification of
fractional-order vessel wall parameters is an important task. At this point, it is hard
to derive them from patient data. Finally, since computational cost of fractional-
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order models is significantly higher due to incorporated non-local and memory ef-
fects, the development of effective numerical algorithms is one of the most import-
ant task in order to bring this class of models into practical applications.
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